
Simon Monk

Electronics
Cookbook
PRACTICAL ELECTRONIC RECIPES WITH ARDUINO & RASPBERRY PI

Simon Monk

Electronics Cookbook
Practical Electronic Recipes

with Arduino and Raspberry Pi

978-1-491-95340-2

[LSI]

Electronics Cookbook
by Simon Monk

Copyright © 2017 Simon Monk. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Susan Conant and Jeff Bleiel
Production Editor: Colleen Lobner
Copyeditor: Christina Edwards
Proofreader: Kim Cofer

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2017: First Edition

Revision History for the First Edition
2017-03-29: First Release
2017-04-21: Second Release
2017-07-21: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491953402 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Electronics Cookbook, the cover image
of an elephantnose fish, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491953402

Table of Contents

Preface. xi

1. Theory. 1
1.0 Introduction 1
1.1 Understanding Current 1
1.2 Understanding Voltage 2
1.3 Calculate Voltage, Current, or Resistance 4
1.4 Calculate Current at Any Point in a Circuit 6
1.5 Calculate the Voltages Within Your Circuit 7
1.6 Understanding Power 8
1.7 Alternating Current 8

2. Resistors. 11
2.0 Introduction 11
2.1 Read Resistor Packages 11
2.2 Find Standard Resistor Values 14
2.3 Select a Variable Resistor 15
2.4 Combine Resistors in Series 17
2.5 Combine Resistors in Parallel 18
2.6 Reduce a Voltage to a Measurable Level 19
2.7 Choose a Resistor that Won’t Burn Out 21
2.8 Measure Light Levels 22
2.9 Measure Temperature 23
2.10 Choose the Right Wires 24

3. Capacitors and Inductors. 29
3.0 Introduction 29
3.1 Store Energy Temporarily in Your Circuits 29

iii

3.2 Identify Types of Capacitors 33
3.3 Read Capacitor Packages 35
3.4 Connect Capacitors in Parallel 36
3.5 Connect Capacitors in Series 37
3.6 Store Huge Amounts of Energy 38
3.7 Calculate the Energy Stored in a Capacitor 39
3.8 Modify and Moderate Current Flow 40
3.9 Convert AC Voltages 41

4. Diodes. 45
4.0 Introduction 45
4.1 Block the Flow of Current in One Direction 45
4.2 Know Your Diodes 47
4.3 Use a Diode to Restrict DC Voltages 49
4.4 Let There Be Light 50
4.5 Detect Light 52

5. Transistors and Integrated Circuits. 55
5.0 Introduction 55
5.1 Switch a Stronger Current Using a Weaker One 56
5.2 Switch a Current with Minimal Control Current 59
5.3 Switch High Current Loads Efficiently 61
5.4 Switch Very High Voltages 63
5.5 Choosing the Right Transistor 64
5.6 Switching Alternating Current 67
5.7 Detecting Light with Transistors 68
5.8 Isolating Signals for Safety or Noise Elimination 69
5.9 Discover Integrated Circuits 71

6. Switches and Relays. 73
6.0 Introduction 73
6.1 Switch Electricity Mechanically 73
6.2 Know Your Switches 75
6.3 Switching Using Magnetism 77
6.4 Rediscover Relays 78

7. Power Supplies. 81
7.0 Introduction 81
7.1 Convert AC to AC 82
7.2 Convert AC to DC (Quick and Dirty) 83
7.3 Convert AC to DC with Less Ripple 85
7.4 Convert AC to Regulated DC 87

iv | Table of Contents

7.5 Converting AC to Variable DC 89
7.6 Regulate Voltage from a Battery Source 90
7.7 Make a Constant-Current Power Supply 91
7.8 Regulate DC Voltage Efficiently 92
7.9 Convert a Lower DC Voltage to a Higher DC Voltage 93
7.10 Convert DC to AC 94
7.11 Power a Project from 110 or 220V AC 97
7.12 Multiply Your Voltage 98
7.13 Supply High Voltage at 450V 99
7.14 Even Higher Voltage Supply (> 1kV) 102
7.15 Very Very High Voltage Supply (Solid-State Tesla Coil) 103
7.16 Blow a Fuse 106
7.17 Protect from Polarity Errors 107

8. Batteries. 111
8.0 Introduction 111
8.1 Estimating Battery Life 111
8.2 Selecting a Nonrechargeable Battery 113
8.3 Selecting a Rechargeable Battery 115
8.4 Trickle Charging 116
8.5 Automatic Battery Backup 117
8.6 Charging LiPo Batteries 119
8.7 Get Every Drop of Power with the Joule Thief 120

9. Solar Power. 123
9.0 Introduction 123
9.1 Power Your Projects with Solar 123
9.2 Choose a Solar Panel 126
9.3 Measure the Actual Output Power of a Solar Panel 128
9.4 Power an Arduino with Solar 130
9.5 Power a Raspberry Pi with Solar 132

10. Arduino and Raspberry Pi. 135
10.0 Introduction 135
10.1 Explore Arduino 135
10.2 Downloading and Using the Book’s Arduino Sketches 139
10.3 Explore Raspberry Pi 140
10.4 Downloading and Running This Book’s Python Programs 141
10.5 Run a Program on Your Raspberry Pi on Startup 142
10.6 Explore Alternatives to Arduino and Raspberry Pi 143
10.7 Switch Things On and Off 145
10.8 Control Digital Outputs with Arduino 149

Table of Contents | v

10.9 Control Digital Outputs from Raspberry Pi 150
10.10 Connect Arduino to Digital Inputs Like Switches 151
10.11 Connect Raspberry Pi to Digital Inputs Like Switches 154
10.12 Read Analog Inputs on Arduino 155
10.13 Generate Analog Output on Arduino 157
10.14 Generate Analog Output on Raspberry Pi 160
10.15 Connect Raspberry Pi to I2C Devices 162
10.16 Connect Raspberry Pi to SPI Devices 164
10.17 Level Conversion 165

11. Switching. 169
11.0 Introduction 169
11.1 Switch More Power than Your Pi or Arduino Can Handle 169
11.2 Switch Power On the High Side 171
11.3 Switch Much More Power 173
11.4 Switch Much More Power on the High Side 175
11.5 Choose Between a BJT and MOSFET 176
11.6 Switch with Arduino 178
11.7 Switch with a Raspberry Pi 181
11.8 Reversible Switching 183
11.9 Control a Relay from a GPIO Pin 184
11.10 Control a Solid-State Relay from a GPIO Pin 187
11.11 Connect to Open-Collector Outputs 188

12. Sensors. 191
12.0 Introduction 191
12.1 Connect a Switch to an Arduino or Raspberry Pi 191
12.2 Sense Rotational Position 196
12.3 Sense Analog Input from Resistive Sensors 201
12.4 Add Analog Inputs to Raspberry Pi 203
12.5 Connect Resistive Sensors to the Raspberry Pi without an ADC 204
12.6 Measure Light Intensity 206
12.7 Measure Temperature on Arduino or Raspberry Pi 207
12.8 Measure Temperature without an ADC on the Raspberry Pi 209
12.9 Measure Rotation Using a Potentiometer 211
12.10 Measure Temperature with an Analog IC 212
12.11 Measure Temperature with a Digital IC 214
12.12 Measure Humidity 218
12.13 Measure Distance 220

13. Motors. 225
13.0 Introduction 225

vi | Table of Contents

13.1 Switch DC Motors On and Off 226
13.2 Measure the Speed of a DC Motor 227
13.3 Control the Direction of a DC Motor 229
13.4 Setting Motors to Precise Positions 233
13.5 Move a Motor a Precise Number of Steps 238
13.6 Choose a Simpler Stepper Motor 243

14. LEDs and Displays. 249
14.0 Introduction 249
14.1 Connect Standard LEDs 249
14.2 Drive High-Power LEDs 252
14.3 Power Lots of LEDs 254
14.4 Switch Lots of LEDs at the Same Time 256
14.5 Multiplex Signals to 7-Segment Displays 256
14.6 Control Many LEDs 259
14.7 Change the Colors of RGB LEDs 264
14.8 Connect to Addressable LED Strips 268
14.9 Use an I2C 7-Segment LED Display 271
14.10 Display Graphics or Text on OLED Displays 275
14.11 Display Text on Alphanumeric LCD Displays 277

15. Digital ICs. 281
15.0 Introduction 281
15.1 Protecting ICs from Electrical Noise 281
15.2 Know Your Logic Families 283
15.3 Control More Outputs Than You Have GPIO Pins 284
15.4 Build a Digital Toggle Switch 288
15.5 Reduce a Signal’s Frequency 289
15.6 Connect to Decimal Counters 290

16. Analog. 293
16.0 Introduction 293
16.1 Filter Out High Frequencies (Quick and Dirty) 293
16.2 Create an Oscillator 297
16.3 Flash LEDs in Series 298
16.4 Avoid Drops in Voltage from Input to Output 299
16.5 Build a Low-Cost Oscillator 301
16.6 Build a Variable Duty Cycle Oscillator 303
16.7 Make a One-Shot Timer 305
16.8 Control Motor Speed 306
16.9 Apply PWM to an Analog Signal 308
16.10 Make a Voltage-Controlled Oscillator (VCO) 310

Table of Contents | vii

16.11 Explore Decibel Measurement 311

17. Operational Amplifiers. 315
17.0 Introduction 315
17.1 Select an Op-Amp 316
17.2 Power an Op-Amp (Split Supply) 318
17.3 Power an Op-Amp (Single Supply) 319
17.4 Make an Inverting Amplifier 320
17.5 Make a Noninverting Amplifier 322
17.6 Buffer a Signal 323
17.7 Reduce the Amplitude of High Frequencies 325
17.8 Filter Out Low Frequencies 328
17.9 Filter Out High and Low Frequencies 330
17.10 Compare Two Voltages 332

18. Audio. 335
18.0 Introduction 335
18.1 Play Sounds on an Arduino 336
18.2 Play Sound with a Raspberry Pi 339
18.3 Incorporate an Electret Microphone Into a Project 340
18.4 Make a 1W Power Amplifier 343
18.5 Make a 10W Power Amplifier 345

19. Radio Frequency. 349
19.0 Introduction 349
19.1 Make an FM Radio Transmitter 354
19.2 Create a Software FM Transmitter Using Raspberry Pi 355
19.3 Build an Arduino-Powered FM Receiver 357
19.4 Send Digital Data Over a Radio 359

20. Construction. 365
20.0 Introduction 365
20.1 Create Temporary Circuits 365
20.2 Create Permanent Circuits 372
20.3 Design Your Own Circuit Board 375
20.4 Explore Through-Hole Soldering 378
20.5 Explore Surface-Mount Soldering 379
20.6 Desolder Components 384
20.7 Solder Without Destroying Components 385

21. Tools. 389
21.0 Introduction 389

viii | Table of Contents

21.1 Use a Lab Power Supply 389
21.2 Measure DC Voltage 391
21.3 Measure AC Voltage 392
21.4 Measure Current 393
21.5 Measure Continuity 394
21.6 Measure Resistance, Capacitance, or Inductance 395
21.7 Discharge Capacitors 396
21.8 Measure High Voltages 397
21.9 Use an Oscilloscope 400
21.10 Use a Function Generator 402
21.11 Simulation 403
21.12 Working Safely with High Voltages 406

A. Parts and Suppliers. 409

B. Arduino Pinouts. 419

C. Raspberry Pi Pinouts. 421

D. Units and Prefixes. 423

Index. 425

Table of Contents | ix

Preface

Traditional wisdom requires people using electronics to have at least an EE degree
before they can do anything useful, but in this book the whole subject of electronics is
given the highly respected O’Reilly Cookbook treatment and is broken down into rec‐
ipes. These recipes make it possible for the reader to access the book at random, fol‐
lowing the recipe that solves their problem and learning as much or as little about the
theory as they are comfortable with.

While it is impossible to cover in one volume everything in a complex and wide-
ranging subject like electronics, I have tried to select recipes that seem to come up
most frequently when I talk to other makers, hobbyists, and inventors.

Who Should Read This Book
If you are into electronics or want to get into electronics, then this is the book that
will help you get more from your hobby. The book is full of built-and-tested recipes
that you can trust to do just what you need them to do, no matter what your level of
expertise.

If you are new to electronics then this book will serve as a guide to get you started; if
you are an experienced electronics maker, it will act as a useful reference.

Why I Wrote This Book
This book has been gestating for a while. I believe that the original concept came
from no less a person than Tim O’Reilly himself. The idea was to fill the gap in the
market between books like the Arduino Cookbook and the Raspberry Pi Cookbook and
heavyweight electronics textbooks.

In other words, to cover more of the fundamentals of electronics and topics periph‐
eral to the use of microcontrollers that often get neglected, except in heavyweight
electronic tomes. Topics such as how to construct various types of power sup‐

xi

ply, using the right transistor for switching, using analog and digital ICs, as well as
how to construct projects and prototypes and use test equipment.

A Word on Electronics Today
Boards like the Arduino and Raspberry Pi have lured whole new generations of mak‐
ers, hobbyists, and inventors into the world of electronics. Components and tools are
now low cost and within the reach of more people than at any time in history. Hack‐
spaces and Fab Labs have electronic workstations where you can use tools to realize
your projects.

The free availability of information including detailed designs means that you can
learn from and adapt other people’s work for your own specific needs.

Many people who start with electronics as a hobby progress to formal education in
electronic engineering, or just jump straight to product design as an inventor and
entrepreneur. After all, if you have access to a computer and a few tools and compo‐
nents, you can build a working prototype of your great invention and then find some‐
one to manufacture it for you, all financed with the help of crowdfunding. The bar‐
rier of entry to the electronics business is at an all-time low.

Navigating This Book
As a “cookbook” you can dive in and use any recipe, rather than read the book in
order. Where you have a recipe that relies on some knowledge or skills from another
recipe, there will be a link back to the prerequisite recipe.

The recipes are arranged in chapters, with Chapters 1 to 6 providing more funda‐
mental recipes, some concerning theory but mostly about different types of compo‐
nent (your recipe ingredients). These chapters are:

• Chapter 1, Theory. As the title suggests, the recipes in this chapter provide you
with the few theoretical concepts such as Ohm’s Law and the power law you just
can’t avoid.

• Chapter 2, Resistors. These most common of electronic components are
explained and recipes provided for some of their uses.

• Chapter 3, Capacitors and Inductors. Here you will find recipes explaining how
these components work, how to identify them, and recipes for making use of
them.

• Chapter 4, Diodes. In this chapter you will find recipes explaining diodes and
uses for different types of diode including Zener diodes, photodiodes, and LEDs.

• Chapter 5, Transistors and Integrated Circuits. This chapter mostly contains fun‐
damental recipes for using transistors and guides for using different types of

xii | Preface

transistors in different settings. ICs (integrated circuits) are introduced, but you
will find individual recipes for ICs scattered throughout the rest of the book.

• Chapter 6, Switches and Relays. The section ends with a look at these common
but often overlooked components.

The next section of chapters looks at how the components introduced in the first sec‐
tion can be used together in various recipes covering pretty much anything electronic
that you might like to design.

• Chapter 7, Power Supplies. Whatever your project, you are going to need to pro‐
vide it with power. You will find recipes here for both traditional power supply
designs as well as switched mode power supplies (SMPS) and more exotic high-
voltage power supplies.

• Chapter 8, Batteries. This chapter contains recipes for selecting batteries and also
practical circuits for charging batteries (including LiPo batteries) and automatic
battery backup.

• Chapter 9, Solar Power. In this chapter, you will find recipes to help you power
your projects using solar panels, including providing solar power to an Arduino
and Raspberry Pi.

• Chapter 10, Arduino and Raspberry Pi. Most Maker projects now include the use
of a computing element like an Arduino or Raspberry Pi. These boards are intro‐
duced along with some recipes for using them to control external electronics.

• Chapter 11, Switching. Not to be confused with “switches,” this chapter provides
recipes that show you how to use transistors, electromechanical relays, and solid-
state relays to turn things on and off using an Arduino or Raspberry Pi.

• Chapter 12, Sensors. This chapter is packed with recipes for many different types
of sensor and shows you how to use them with both Arduino and Raspberry Pi.

• Chapter 13, Motors. In this chapter, there are recipes for using different types of
motors (DC, stepper, and servo) with both Arduino and Raspberry Pi. There are
also recipes for controlling both the speed and direction of motors.

• Chapter 14, LEDs and Displays. In addition to recipes for controlling standard
LEDs from an Arduino or Raspberry Pi, this chapter also has recipes for using
high-power LEDs and various types of displays, including OLED graphical dis‐
plays, addressable LED strips (NeoPixels), and LCD displays.

• Chapter 15, Digital ICs. This chapter contains recipes for using those digital ICs
that are still useful in your projects in spite of the advent of microcontrollers.

• Chapter 16, Analog. In this chapter, you will find a collection of recipes for vari‐
ous useful analog designs from simple filtering to a range of oscillator and timer
designs.

• Chapter 17, Operational Amplifiers. Continuing with the analog theme, this chap‐
ter provides recipes for using op-amps for various tasks from straightforward
amplification to filter design, buffering, and comparators.

Preface | xiii

• Chapter 18, Audio. Here, you will find recipes for making sounds from an Ardu‐
ino or Raspberry Pi as well as power amplifier designs (both analog and digital)
and amplifying the signal from a microphone.

• Chapter 19, Radio Frequency. This chapter has some interesting recipes for FM
transmitters and receivers as well as for sending packet data from one Arduino to
another.

The final section of the book contains recipes for construction and the use of tools.

• Chapter 20, Construction. This chapter contains recipes for building “unsoldered”
prototypes and for making those projects into a more permanent soldered form.
It also provides recipes for soldering, both through-hole and surface-mount devi‐
ces.

• Chapter 21, Tools. The use of bench power supplies, multimeters, oscilloscopes,
and the use of simulations software are all described here in a series of recipes.

The book also includes appendices that list all the parts used in the book along with
useful suppliers and provide pinouts for devices including the Arduino and Rasp‐
berry Pi.

Online Resources
There are many wonderful resources available for the electronics enthusiast.

If you are looking for project ideas then sites like Hackaday and Instructables are a
great source of inspiration.

When it comes to getting help with a project, you will often get great advice from the
many experienced and knowledgable people that hang out on the following forums.
Remember to search the forum before asking your question, in case it has come up
before (usually it has) and always explain your question clearly, or “experts” can get
impatient with you.

• http://forum.arduino.cc
• https://www.raspberrypi.org/forums
• http://www.eevblog.com/forum
• http://electronics.stackexchange.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xiv | Preface

http://hackaday.com
http://instructables.com
http://forum.arduino.cc/
https://www.raspberrypi.org/forums
http://www.eevblog.com/forum/
http://electronics.stackexchange.com

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/simonmonk/electronics_cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Electronics Cookbook by Simon
Monk (O’Reilly). Copyright 2017 Simon Monk, 978-1-491-95340-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/simonmonk/electronics_cookbook
mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/electronics-cookbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/electronics-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Duncan Amos, David Whale, and Mike Bassett for their technical reviews
of the book and the many useful comments that they provided to help make this book
as good as it could be.

I’d also like to thank Afroman for permission to use his great FM transmitter design
and the guys at Digi-Key for their help in compiling parts codes.

As always, it’s been a pleasure working with the professionals at O’Reilly, in particular
Jeff Bleiel, Heather Scherer, and of course, Brian Jepson.

Preface | xvii

http://afrotechmods.com/

CHAPTER 1

Theory

1.0 Introduction
Although this book is fundamentally about practice rather than theory, there are a
few theoretical aspects of electronics that are almost impossible to avoid.

In particular, if you understand the relationship between voltage, current, and resist‐
ance many other things will make a lot more sense.

Similarly, the relationship between power, voltage, and current crops up time and
time again.

1.1 Understanding Current
Problem
You want to understand what is meant by current in electronics.

Solution
As the word current suggests, the meaning of current in electronics is close to that of
the current in a river. You could think of the strength of the current in a pipe as being
the amount of water passing a point in the pipe every second. This might be meas‐
ured in so many gallons per second.

In electronics, current is the amount of charge carried by electrons passing a point in
a wire per second (Figure 1-1). The unit of current is the ampere, abbreviated as amp
or as unit symbol A.

1

Figure 1-1. Current flowing through a wire

Discussion
For many circuits, one whole amp is quite a large current, so you will see the units of
mA (milliamp, a thousandth of an amp) a lot.

See Also
For a list of units and unit prefixes such as mA, see Appendix D.

To learn more about current in a circuit, see Recipe 1.4.

1.2 Understanding Voltage
Problem
You want to understand what is meant by voltage in electronics.

Solution
In Recipe 1.1 you read how current is the rate of flow of charge. That current will not
flow without something influencing it. In a water pipe, that might be because one end
of the pipe is higher than the other.

2 | Chapter 1: Theory

To understand voltage, it can be useful to think of it as being similar to height in a
system of water pipes. Just like height, it is relative, so the height of a pipe above sea
level does not determine how fast the water flows through a pipe, but rather how
much higher one end of the pipe is than the other (Figure 1-2).

Figure 1-2. Voltage by analogy to height

Voltage might refer to the voltage across a wire (from one end to the other) and in
other situations, it might refer to the voltage from one terminal of a battery to
another. The common feature is that for voltage to make any sense, it must refer to
two points; the higher voltage is the positive voltage, marked with a +.

It is the difference in voltage that makes a current flow in a wire. If there is no differ‐
ence in voltage between one end of a wire and another then no current will flow.

The unit of voltage is the volt. An AA battery has about 1.5V across its terminals. An
Arduino operates at 5V, while a Raspberry Pi operates at 3.3V, although it requires a
5V supply that it reduces to 3.3V.

Discussion
Sometimes it seems like voltage is used to refer to a single point in an electronic cir‐
cuit rather than a difference between two points. In such cases the voltage then means
the difference between the voltage at one point in the circuit and ground. Ground
(usually abbreviated as GND) is a local reference voltage against which all other vol‐
tages in the circuit are measured. This is, if you like, 0V.

1.2 Understanding Voltage | 3

See Also
To learn more about voltages, see Recipe 1.5.

1.3 Calculate Voltage, Current, or Resistance
Problem
You want to understand how the voltage across something controls the current flow‐
ing through it.

Solution
Use Ohm’s Law.

Ohm’s Law states that the current flowing through a wire or electronic component (I)
will be the voltage across that wire or component (V) divided by the resistance of the
component (R). In other words:

I = V
R

If it is the voltage that you want to calculate, then this formula can be rearranged as:

V = I × R

And, if you know the current flowing through a resistor and the voltage across the
resistor, you can calculate the resistance using:

R = V
I

Discussion
Resistance is the ability of a substance to resist the flow of current. A wire should
have low resistance, because you do not usually want the electricity flowing through
the wire to be unnecessarily impeded. The thicker the wire, the less its resistance for a
given length. So a few feet of thin wire that you might find connecting a battery to a
lightbulb (or more likely LED) in a flashlight might have a resistance of perhaps
0.1Ω to 1Ω, whereas the same length of thick AC outlet cable for a kettle may have a
resistance of only a couple of milliohms (mΩ).

It is extremely common to want to limit the amount of current flowing through part
of a circuit by adding some resistance in the form of a special component called a
resistor.

4 | Chapter 1: Theory

Figure 1-3 shows a resistor (zig-zag line) and indicates the current flowing through it
(I) and the voltage across it (V).

Figure 1-3. Voltage, Current, and Resistance

Let’s say that we were to connect a 1.5V battery to a 100Ω resistor as shown
in Figure 1-4. The Greek letter Ω (omega) is used as shorthand for the unit of resist‐
ance (the “Ohm”).

Figure 1-4. Battery and Resistor

Using Ohm’s Law, the current is the voltage across the resistor divided by the resist‐
ance of the resistor (we can assume that the wires have a resistance of zero).

So, I = 1.5 / 100 = 0.015 A or 15mA.

See Also
To understand what happens to current flowing through resistors and wires in a cir‐
cuit, see Recipe 1.4.

To understand the relationship between current, voltage, and power, see Recipe 1.6.

1.3 Calculate Voltage, Current, or Resistance | 5

1.4 Calculate Current at Any Point in a Circuit
Problem
You want to understand what current will be flowing through any point on a circuit.

Solution
Use Kirchhoff ’s Current Law.

Stated simply, Kichhoff ’s Current Law says that at any point on a circuit, the current
flowing into that point must equal the current flowing out.

Discussion
For example, in Figure 1-5 two resistors are in parallel and supplied with a voltage
from a battery (note the schematic symbol for a battery on the left of Figure 1-5).

Figure 1-5. Resistors in parallel

At point X, a current of I will be flowing into point X from the battery, but there are
two branches out of X. If the resistors are of equal value then each branch will have
half the current flowing through it.

At point Y, the two paths recombine and so the two currents of I/2 flowing into Y will
be combined to produce a current of I flowing out of Y.

See Also
For Kirchhoff ’s Voltage Law, see Recipe 1.5.

For further discussion on resistors in parallel, see Recipe 2.5.

6 | Chapter 1: Theory

1.5 Calculate the Voltages Within Your Circuit
Problem
You want to understand how the voltages around a circuit add up.

Solution
Use Kirchhoff ’s Voltage Law.

This law states that all the voltages between various points around a circuit will add
up to zero.

Discussion
Figure 1-6 shows two resistors in series with a battery. It is assumed that the two
resistors are of equal value.

Figure 1-6. Resistors in Series

At first glance it is not clear how Kirchhoff ’s Voltage Law applies until you look at the
polarity of the voltage. On the left, the battery supplies V volts, which is equal in
magnitude, but opposite in direction (and hence sign) to the two voltages V/2 across
each resistor.

Another way to look at this is that V must be balanced by the two voltages V/2. In
other words, V = V/2 + V/2 or V – (V/2 + V/2) = 0.

See Also
This arrangement of a pair of resistors is also used to scale voltages down (see Recipe
2.6).

For Kirchhoff ’s Current Law, see Recipe 1.4.

1.5 Calculate the Voltages Within Your Circuit | 7

1.6 Understanding Power
Problem
You want to know what is meant by power in electronics.

Solution
In electronics, power is the rate of conversion of electrical energy to some other form
of energy (usually heat). It is measured in Joules of energy per second, which is also
known as a watt (W).

When you wire up a resistor as shown back in Figure 1-4 of Recipe 1.3 the resistor
will generate heat and if it’s a significant amount of heat then the resistor will get hot.
You can calculate the amount of power converted to heat using the formula:

P = I x V

In other words, the power in watts is the voltage across the resistor (in volts) multi‐
plied by the current flowing through it in amps. In the example of Figure 1-4 where
the voltage across the resistor is 1.5V and the current through it was calculated as
15mA, the heat power generated will be 1.5V x 15mA = 22.5mW.

Discussion
If you know the voltage across the resistor and the resistance of the resistor, then you
can combine Ohm’s Law and P=IV and use the formula:

P = V2

R

With V=1.5V and R of 100Ω the power is 1.5V x 1.5V / 100Ω = 22.5mW.

See Also
For Ohm’s Law see Recipe 1.3.

1.7 Alternating Current
Problem
You have heard that electricity comes in two flavors: direct current (DC) and alternat‐
ing current (AC), and want to know the difference.

8 | Chapter 1: Theory

Solution
In all the recipes up to this point, DC is assumed. The voltage is constant and gener‐
ally what you would expect a battery to supply.

AC is what is supplied by wall outlets, and although it can be reduced to lower vol‐
tages (see Recipe 3.9) it is generally of a high (and dangerous) voltage. In the US, this
means 110V and in most of the rest of the world 220V or 240V.

Discussion
What puts the alternating in alternating current is the fact that the direction of cur‐
rent flow in AC reverses many times per second. Figure 1-7 shows how the voltage
varies in a US AC wall outlet.

Figure 1-7. Alternating Current

The first thing to notice is that the voltage follows the shape of a sine wave, gently
increasing until it exceeds 150V then heading down past 0V to around –150V and
then back up again, taking about 16.6 thousandths of a second (milliseconds, or ms)
to complete one full cycle.

1.7 Alternating Current | 9

The relationship between the period of AC (time taken for one complete cycle) and
the frequency of the AC (number of cycles per second) is:

f requency = 1
period

The unit of frequency is the Hertz (abbreviated as Hz) so you can see that the AC
shown in Figure 1-7 has a period of 16.6ms, which is 0.0166 seconds. So you can cal‐
culate the frequency as:

f requency = 1
period = 1

0 . 0166 ≈ 60Hz

You may be wondering why AC from an outlet is described as 110V when it actually
manages to swing over a range of over 300V from peak to peak. The answer is that
the 110V figure is the equivalent DC voltage that would be capable of providing the
same amount of power. This is called the RMS (root mean square) voltage and is the
peak voltage divided by the square root of 2 (which is roughly 1.41). So, in the pre‐
ceding example, the peak voltage of 155V when divided by 1.41 gives a result of
roughly 110V RMS.

See Also
You will find more information on using AC in Chapter 7.

10 | Chapter 1: Theory

CHAPTER 2

Resistors

2.0 Introduction
Resistors are used in almost every electronic circuit, come in a huge variety of shapes
and sizes, and are available in a range of values that spans milliohms (thousandths of
an ohm) to mega ohms (millions of ohms).

Ohm, the unit of resistance, is usually abbreviated as the Greek letter omega (Ω),
although you will sometimes see the letter R used instead. For example, 100Ω and
100R both mean a resistor with a resistance of 100 ohms.

2.1 Read Resistor Packages
Problem
You want to work out the value of a resistor.

Solution
On a through-hole resistor (a resistor with leads) that has colored stripes on it, use
the resistor color code.

If your resistor has stripes in the same positions as Figure 2-1 then the three stripes
together on the left determine the resistor’s value and the single stripe on the right
determines the accuracy of the value.

11

Figure 2-1. A Three-Stripe Resistor

Each color has a value as listed in Table 2-1.

Table 2-1. Resistor Color Codes
Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Gray 8

White 9

Gold 1/10

Silver 1/100

For a three-stripe resistor such as this, the first two stripes determine the basic value
(say 27 in Figure 2-1) and the third stripe determines the number of zeros to add to
the end. In the example of Figure 2-1, the value of a resistor with stripes red, purple,
and brown is 270Ω. I said before that this stripe indicates the number of zeros, but
actually, to be more accurate, it is a multiplier. If it has a value of gold, then this

12 | Chapter 2: Resistors

means ⅒ of the value indicated by the first two stripes. So brown, black, and gold
would indicate a 1Ω resistor.

The stripe on its own specifies the tolerance of the resistor. Silver (rare these days)
indicates ±10%, gold ±5%, and brown ±1%.

If your resistor has stripes as shown in Figure 2-2 then the value of the resistor is
specified with an extra digit of precision. In this case, the first three stripes determine
the basic value (in the case of Figure 2-2, 270) and the final digit the number of zeros
to add (in this case, 0). This resistor is also 270Ω.

Figure 2-2. A Four-Stripe Resistor

For low-value resistors, gold is used as a multiplier of 0.1 and silver of 0.01. A 1Ω
four-stripe resistor would have value stripes of brown, black, black, and silver (100 x
0.01).

Discussion
Although tiny, surface mount technology (SMT) resistors normally have their value
of resistance printed on them. However, the same system of base value followed by
multiplier is used so a 270Ω SMT resistor would have the number 2700 printed on it
and a 1kΩ resistor 1001.

2.1 Read Resistor Packages | 13

See Also
Through-hole capacitors also have value labels similar to SMT resistors (see Recipe
3.3).

2.2 Find Standard Resistor Values
Problem
You’ve done your calculations and you need a 239Ω resistor, but how do you match
this to a standard value that you can actually buy?

Solution
Buy a resistor from ±5% E24 series.

Values in the E24 series have basic values of 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27,
30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91, with as many zeros after them as
you need.

Discussion
The ±1% E96 series includes all the base values of the E24 series, but has four times as
many values. However, it is very rare to need such precise values of resistor.

If your resistor is to limit current to some other component that might be damaged,
perhaps limiting the power to an LED (Recipe 4.4) or into the base of a bipolar tran‐
sistor (Recipe 5.1), then pick the next largest value of resistor from the E24 series.

For example, if your calculations tell you that the resistor should be a 239Ω resistor,
then pick a 240Ω resistor from the E24 series.

In reality, you may decide to limit yourself even further to avoid having to gradually
collect every conceivable value of resistor, especially as they are often sold in packs of
100. I generally keep the following resistor values in stock: 10Ω, 100Ω, 270Ω, 470Ω,
1k, 3.3k, 4.7k, 10k, 100k, and 1M.

See Also
For full details on all of the resistor series available, see http://www.logwell.com/tech/
components/resistor_values.html.

14 | Chapter 2: Resistors

http://www.logwell.com/tech/components/resistor_values.html
http://www.logwell.com/tech/components/resistor_values.html

2.3 Select a Variable Resistor
Problem
You want to understand how variable resistors work.

Solution
A variable resistor, a.k.a. a pot or potentiometer, is made from a resistive track and a
slider that varies its position along the track. By varying the position of the slider you
can vary the resistance between the slider and either of the terminals at the ends of
the track. The most common pots are rotary like the one shown in Figure 2-3.

Figure 2-3. A Rotary Pot

Discussion
Pots come in a large variety of shapes and sizes. Figure 2-4 shows a selection of pots.

2.3 Select a Variable Resistor | 15

Figure 2-4. Potentiometers

The two pots on the left of Figure 2-4 are called trimmers or trimpots. These devices
are designed to be turned using a screwdriver or by twiddling the tiny knob between
the thumb and forefinger.

The next pot is a pretty standard device with a threaded barrel that allows the pot to
be fixed into a hole. The shaft can be cut to the length required before fixing a knob
to it.

There is a dual-gang pot in the middle of Figure 2-4. This is actually two pots with a
common shaft and is often employed in stereo volume controls. After that is a similar
looking device that combines a pot with an on/off switch. Finally, on the right is a
sliding type of pot, the kind that you might find on a mixing desk.

Pots are available with two types of tracks. Linear tracks have a close to linear resist‐
ance across the whole range of the pot. So, at the half-way point the resistance will be
half of the full range.

Pots with a logarithmic track increase in resistance as a function of the log of the
slider position rather than in proportion to the position. This makes them more suit‐
able to volume controls as human perception of loudness is logarithmic. Unless you
are making a volume control for an audio amplifier, you probably want a linear pot.

See Also
To connect a pot to an Arduino or Raspberry Pi, see Recipe 12.9.

A potentiometer lends itself to being a variable voltage divider (see Recipe 2.6).

16 | Chapter 2: Resistors

2.4 Combine Resistors in Series
Problem
You want to understand the overall resistance and power-handling implications of
placing a number of resistors in series.

Solution
The overall resistance of a number of resistors in series is just the sum of the separate
resistances.

Discussion
Figure 2-5 shows two resistors in series. The current flows through one resistor and
then the second. As a pair, the resistors will be equivalent to a single resistor of 200Ω.

Figure 2-5. Resistors in Series

The heating power of each resistor will be Power = V2

R = 0 . 752

100Ω = 5 . 6mW.

If you used a single resistor of 200Ω then the power would be:

Power = V2

R = 1 . 52

200 = 11 . 3mW

So, by using two resistors, you can double the power.

You may be wondering why you would ever want to use two resistors in series when
you could just use one. Power dissipation may be one reason, if you cannot find resis‐
tors of sufficient power.

But there are other situations, such as the one shown in Figure 2-6, where you use a
variable resistor (pot) with a fixed resistor to make sure that the combination’s resist‐
ance does not fall below the value of the fixed resistor.

2.4 Combine Resistors in Series | 17

Figure 2-6. A Pot and Fixed Resistor

See Also
Resistors in series are often used to form a voltage divider (see Recipe 2.6).

2.5 Combine Resistors in Parallel
Problem
You want to understand the overall resistance and power-handling implications of
placing a number of resistors in parallel.

Solution
The combined resistance of a number of resistors in parallel is the inverse of the sum
of the inverses of the resistors. That is, if there are two resistors R1 and R2 in parallel,
then the overall resistance is given by:

Rtotal = 1
1

R1
+ 1

R2

Discussion
In the example shown in Figure 2-7 with two 100Ω resistors in parallel, the arrange‐
ment is equivalent to a single resistor of:

Rtotal = 1
1

100Ω + 1
100Ω

= 1
2

100Ω

= 1
1

50Ω

= 50Ω

Intuitively, this makes perfect sense, because there are now two equally resistive paths
through the resistors instead of one as would be the case with a single resistor.

18 | Chapter 2: Resistors

Figure 2-7. Resistors in Parallel

In Figure 2-7 a single 50Ω resistor is equivalent to the two 100Ω resistors in parallel,
but what implications does this have for the power ratings of the two resistors?

Intuitively, you would expect the total power dissipation of two 100Ω resistors to be
the same as the two 50Ω resistors, but just to be sure let’s do the math.

For each 100Ω resistor, the power will be:

Power = V2

R = 1 . 52

100Ω = 22 . 5mW

So the total for the two resistors will be 45mW, allowing you to use lower power and
more common resistors.

Just as you’d expect, performing the calculation for the single 50Ω resistor you get:

Power = V2

R = 1 . 52

50Ω = 45mW

See Also
See Recipe 2.4 for resistors in series.

2.6 Reduce a Voltage to a Measurable Level
Problem
You have a DC or AC voltage that you want to reduce.

Solution
Use two resistors in series as a voltage divider (also called potential divider). The
word “potential” indicates the voltage has the potential to do work and make current
flow.

Figure 2-8 shows a pair of resistors being used as a voltage divider.

2.6 Reduce a Voltage to a Measurable Level | 19

Figure 2-8. A Voltage Divider

The output voltage (Vout) will be a fraction of the input voltage (Vin) according to
the formula:

Vout = R2
R1 + R2 × Vin

For example, if R1 is 470Ω, R2 is 270Ω, and Vin is 5V:

Vout = R2
R1 + R2 × Vin = 470

270 + 470 × 5V = 3 . 18V

Discussion
Note that if R1 and R2 are equal then the voltage is divided by 2.

A pot naturally forms a potential divider as you can think of it as two resistors in ser‐
ies whose overall resistance adds up to the same value, but the proportion of the
resistance of R1 to R2 varies as you turn the knob. This is just how a pot is used in a
volume control.

It may be tempting to think of a voltage divider as useful for reducing voltages in
power supplies. However, this is not the case, because as soon as you try to use the
output of the voltage divider to power something (a load), it is as if another resistor is
being put in parallel with R2. This effectively reduces the resistance of the bottom
half of the voltage divider and therefore also reduces the output voltage. This will
only work if R1 and R2 are much lower than the resistance of the load. This makes
them great for reducing signal levels, but of no use for high-power circuits.

See Also
See Chapter 7 for various techniques for reducing voltages in power supplies.

For level shifting with a voltage divider, see Recipe 10.17.

20 | Chapter 2: Resistors

2.7 Choose a Resistor that Won’t Burn Out
Problem
You want to know what power rating to use for a resistor to avoid overheating and
failing it.

Solution
Calculate the power (Recipe 1.6) your resistor will be converting into heat and pick a
resistor with a power rating comfortably greater than this value.

For example, if you have a 10Ω resistor connected directly to the terminals of a 1.5V
battery, then the power that the resistor converts to heat can be calculated as:

P = V2

R = 1 . 5 × 1 . 5
10 = 0 . 225W

This means that a standard ¼W resistor will be OK, but you may wish to take the
next step up to ½W.

Discussion
The most common power rating of resistor used by hobbyists is the ¼W (250mW)
resistor. These resistors are not so tiny that they are hard to handle or the leads too
thin to make good contact in breadboard (Recipe 20.1) yet they are capable of han‐
dling enough power for most uses, such as limiting current to LEDs (Recipe 14.1) or
used as voltage dividers for low current (Recipe 2.6).

Other common power ratings for through-hole resistors with leads are ½W, 1W, 2W,
5W, 10W, and even higher power resistors.

Figure 2-9 shows a selection of resistors of different power ratings.

When it comes to the tiny surface-mount “chip resistors” that are surface mounted
onto circuit boards, power ratings start much lower.

See Also
To understand power, see Recipe 1.6.

2.7 Choose a Resistor that Won’t Burn Out | 21

Figure 2-9. Resistors from Left to Right: 0.125W, 0.25W, 0.5W, 1W, and 7W at the Top

2.8 Measure Light Levels
Problem
You want to measure the intensity of light electronically.

Solution
Use a photoresistor.

A photoresistor (Figure 2-10) is a resistor in a clear plastic package whose resistance
varies depending on the amount of light falling on it. The more brightly the photore‐
sistor is illuminated, the lower the resistance.

A typical photoresistor might have a resistance in direct sunlight of 1kΩ increasing to
several MΩ in total darkness.

Discussion
Photoresistors are often used in a voltage-divider arrangement (Recipe 2.6) with a
fixed-value resistor to convert the resistance of the photoresistor into a voltage that
can then be used with a microcontroller (Recipe 12.6) or comparator (Recipe 17.10).

22 | Chapter 2: Resistors

Figure 2-10. A Photoresistor

See Also
You will find more details on using a photoresistor in Recipe 12.6.

2.9 Measure Temperature
Problem
You want to measure temperature electronically.

Solution
One method is to use a thermistor. Other ways can be found in Recipe 12.10 and
Recipe 12.11.

All resistors are slightly sensitive to changes in temperature. However, thermistors
(Figure 2-11) are resistors whose resistance is very sensitive to changes in tempera‐
ture. As with photoresistors (Recipe 2.8), they are often used in a voltage divider
(Recipe 2.6) to convert the resistance to a voltage reading that is more convenient.

2.9 Measure Temperature | 23

Figure 2-11. Two Thermistors

Discussion
There are two types of thermistors. NTC (negative temperature coefficient) thermis‐
tors are the more common type and their resistance decreases as the temperature
increases. PTC (positive temperature coefficient) thermistors have a resistance that
increases as the temperature increases.

In addition to being used to measure temperature (see Recipe 12.7) PTC thermistors
are also used to limit current. As the current through the thermistor increases, the
resistor heats up and thus its resistance increases, reducing the current.

See Also
For practical circuits that use a thermistor to measure temperature, see Recipe
12.7 and Recipe 12.8.

2.10 Choose the Right Wires
Problem
The idealized wire has zero resistance. In reality wires do have resistance and you
want to know how to account for this in designs as well as know about different types
of wire.

24 | Chapter 2: Resistors

Solution
Wires all have resistance. A thick copper wire will have a much lower resistance than
the same length of a much thinner wire. As someone once said, “the great thing about
standards are that there are always lots to choose from.” Nowhere is this more true
than for wire thicknesses or gauges. One of the most common standards is AWG
(American Wire Gauge) mostly used in the US, and the SWG (Standard Wire Gauge)
mostly used in the UK and most logically just the diameter of the wire in mm.

Nearly all wiring used in electronics is made of copper. If you strip the insulation off a
wire and it looks silver-colored, then it’s probably still copper, but copper that has
been “tinned” to stop it from oxidizing and make it easier to solder.

Table 2-2 shows some commonly used wire gauges along with their resistances in Ω
per foot and meter for copper wiring.

Table 2-2. Properties of Commonly Used Wire Gauges

AWG Diameter (mm) mΩ/m mΩ/foot Max. Current (A) Notes

30 0.255 339 103 0.14

28 0.376 213 64.9 0.27

24 0.559 84.2 25.7 0.58 Solid-core hookup wire

19 0.95 26.4 8.05 1.8 General-purpose multicore wire

15 1.8 10.4 3.18 4.7 Thick multicore wire

The larger the AWG number the thicker the wire. Wires thinner than 24AWG are
most likely to be thin enameled wire designed for winding transformers and indict‐
ors, like the wire shown in Figure 2-12.

Figure 2-12. Enamel-Insulated Wire for Winding Inductors 30-22 AWG

2.10 Choose the Right Wires | 25

Solid-core wire is made of a single strand of copper insulated in plastic (Figure 2-13).
It is useful with solderless breadboards (Recipe 20.1) but should not be used in situa‐
tions where it is likely to be flexed as it will break through metal fatigue if bent back
and forth. I always have this wire in at least three colors so that I can use black for
negative, red for positive, and other colors for nonpower connections.

Figure 2-13. Single-core Hookup Wire (24 AWG)

For general-purpose wire where some movement is likely, use multicore wire made
up of a number of strands of wire twisted about each other and encased in plastic
insulation. Again, it’s useful to have a selection of colors.

Figure 2-14. 19 and 15 AWG Multicore Wire with Twin “Bell-wire”

26 | Chapter 2: Resistors

Discussion
The currents listed in Table 2-2 are only suggestions. The actual current that each
gauge of wire can carry without getting too hot depends on many factors, including
how well ventilated the project’s case is and whether the wires are all grouped
together with a whole load of other wires all getting warm. So treat Table 2-2 as
a guide.

When you buy wire, the maximum temperature of the insulation will usually be
specified. This is not just because of internal heating of the wire but also for situations
where the insulation is to be used in hot environments such as ovens or furnaces.

If you are looking for wires to carry high voltages then you will need a good insula‐
tion layer. Again, wires will normally have a breakdown voltage specified for the insu‐
lation.

See Also
For a table comparing wire gauges, see http://bit.ly/2lOyPIh.

For the current-handling capabilities of wire by gauge, see http://bit.ly/2mbgZS8.

2.10 Choose the Right Wires | 27

http://bit.ly/2lOyPIh
http://bit.ly/2mbgZS8

CHAPTER 3

Capacitors and Inductors

3.0 Introduction
When it comes to digital electronics, capacitors are almost a matter of insurance, pro‐
viding short-term stores of charge that improve the reliability of circuits. As such
their use is often simply a matter of following the recommendations in the IC’s data‐
sheet without the need to do any math.

However, when it comes to analog electronics the use of capacitors becomes much
more varied. Their ability to store small amounts of charge for a short period of time
can be used to set the frequency of oscillators (see Recipe 16.5). They can be used to
smooth the ripples for a power supply (see Recipe 7.2) or to couple two audio circuits
without transferring the DC part of the signal (see Recipe 17.9).

In fact, capacitors will be used throughout this book in all sorts of ways, so it’s impor‐
tant to understand how they work, how to select the right capacitor, and how to
use it.

Inductors are not as common as capacitors, but they are widely used in certain roles,
particularly in power supplies (see Chapter 7).

3.1 Store Energy Temporarily in Your Circuits
Problem
You need an electronic component that can store energy for short periods of time,
perhaps to create pulses, or to insulate other components from voltage spikes.

29

Solution
Use a capacitor.

In construction, capacitors are just two conductive surfaces separated by an insulat‐
ing layer (Figure 3-1).

Figure 3-1. A Capacitor

In fact, the insulating layer between the conductive surfaces of the capacitor can just
be air, although a capacitor using an air gap will be of very low value. In fact, the
value of the capacitor depends on the area of the conducting plates, how close they
are together, and how good an insulator separates them. So the greater the area of the
plates and the smaller the distance between them the greater the capacitance (the
more charge it can store).

Individual electrons do not flow through a capacitor, but those on one side of the
capacitor influence those on the other. If you apply a voltage source like a battery to a
capacitor, then the plate of the capacitor connected to the positive supply of the bat‐
tery will accumulate positive charge and the electric field this generates will create a
negative charge of equal magnitude on the opposite plate.

In water terms, you can think of a capacitor as an elastic membrane in a pipe
(Figure 3-2) that does not allow water to pass all the way through the pipe, but will
stretch, allowing the capacitor to be charged. If the capacitor is stretched too far then
the elastic membrane will rupture. This is why exceeding the maximum voltage of a
capacitor is likely to destroy it.

Discussion
When you apply a voltage across a capacitor it will almost instantly charge to that
voltage. But if you charge it through a resistor then it will take time to become full of
charge. Figure 3-3 shows how a capacitor can be charged or discharged through the
use of the switches S1 and S2.

30 | Chapter 3: Capacitors and Inductors

Figure 3-2. Water and Pipe Analogy for a Capacitor

Figure 3-3. Charging and Discharging a Capacitor

When you close switch S1, C1 will charge through R1 until C1 reaches the battery
voltage. Open S1 again and the now charged capacitor will retain its charge. Eventu‐
ally the capacitor will lose its charge through self-discharge.

If you now close S2, C1 will now discharge through R2 and LED1, which will light
brightly at first and then more dimly as C1 is discharged.

If you want to experiment with the schematic diagram of Figure 3-3, then build up
the breadboard diagram shown in Figure 3-4. For an introduction to breadboard, see
Recipe 20.1. Use 1kΩ resistors and a 100µF capacitor.

3.1 Store Energy Temporarily in Your Circuits | 31

Figure 3-4. Breadboard Layout for Capacitor Experimentation

Press the button labeled CHARGE for a second or two to charge the capacitor then
release the button and press the DISCHARGE button. The LED should glow brightly
for a second or so and then dim until it extinguishes after a second or so.

If you were to monitor the voltage across the capacitor while it was first being
charged and then discharged, you would see something similar to Figure 3-5.

Figure 3-5. Charging and Discharging a Capacitor

32 | Chapter 3: Capacitors and Inductors

In Figure 3-5 the square-shaped waveform is the voltage applied to the capacitor
through a 1kΩ resistor. For the first 400ms this is 9V. But as you can see the voltage
across the capacitor does not increase linearly, but rather increases faster at first and
then gradually tails off as the voltage across the capacitor gets closer to the battery
voltage.

Similarly, when the capacitor discharges, the voltage decreases sharply at first and
then starts to tail off.

So, if a capacitor stores electrical energy, you may be wondering how this differs from
a rechargeable battery. Well, in fact a special type of very high capacitance capacitor
called a supercapacitor is sometimes used in place of a rechargeable battery for appli‐
cations that require a very rapid storage and release of energy. The differences
between a capacitor and a battery include:

• A rechargeable battery uses a chemical reaction to generate electricity’ a capacitor
stores charge directly.

• A rechargeable battery must be charged and discharged over a period of minutes
or hours. A capacitor can charge and discharge in fractions of a second.

• The voltage across a capacitor falls off sharply as it starts to discharge, whereas
the voltage across a battery stays relatively constant until most of the energy is
used.

• Per unit size, a battery can store around ten times as much energy as the best
supercapacitor.

See Also
For information on using a solderless breadboard, see Recipe 20.1.

The voltage curves of Figure 3-5 were created using a circuit simulator (Recipe
21.11). You can experiment with this simulation online using PartSim at http://bit.ly/
2mrtrhs.

3.2 Identify Types of Capacitors
Problem
You need to navigate the bewildering array of capacitor types to select one that is
appropriate for your application.

Solution
Unless your application needs capacitors with special features, the following rule of
thumb applies.

3.2 Identify Types of Capacitors | 33

http://bit.ly/2mrtrhs
http://bit.ly/2mrtrhs

In most cases, for capacitors between 1pF and 1nF use a disc capacitor (Figure 3-6a).
For capacitors between 1nF and 1µF use a multilayer ceramic capacitor (MLC;
Figure 3-6b) and for capacitors above 1µF use an aluminum electrolytic capacitor
(Figure 3-6c). The rightmost capacitor is a tantulum electrolytic capacitor.

Figure 3-6. Capacitor Types: (a) Disc Ceramic, (b) MLC, (c) Aluminum Electrolytic, and
(d) Tantulum

Discussion
Although disc ceramic, MLC, and aluminum electrolytic capacitors are the most
commonly used types of capacitor, there are other types:

• Glass and mica capacitors offer a wide temperature range, but are expensive
compared to other types of capacitor.

• Tantulum electrolytic capacitors are polarized capacitors that have values around
the overlap between the ranges of MLC and electrolytic capacitors. They are
small, but relatively expensive and available in values up to a few tens of µF. They
suffer from the disadvantage that when they fail, they generally fail in such a way
that the terminals of the capacitor become connected to each other, often with
fairly explosive consequences. Improvements in MLC capacitors have led to
upper values of capacitance of hundreds of µF making tantulum capacitors some‐
thing of a rarity.

Capacitors are less reliable than resistors. Exceed the voltage rating and you are likely
to damage the insulating layer. Electrolytic capacitors use an electrolyte contained in
an aluminum can that creates a very thin layer of oxide as the insulator. These are
especially prone to failure due to overvoltage, or overtemperature, or just age. If vin‐

34 | Chapter 3: Capacitors and Inductors

tage HiFi equipment fails, it is usually the large electrolytic capacitors in the power
supplies that are the cause of the failure. In addition, if an electrolytic capacitor does
fail then it can spray out the electrolyte in a somewhat messy manner.

Voltage rating
In addition to the actual capacitance of a capacitor, there are a number of other
factors to consider when selecting a device. Of critical importance is the voltage
rating. Unless you are creating something that uses high voltages, this is not usually a
problem with smaller value capacitors, as they are generally rated at least 50V.
However, as soon as you get into the range of electrolytics then you will be in a trade-
off between capacitor size and voltage. Electrolytic capacitors are commonly available
in voltage ratings of 6.3V, 10V, 25V, 30V, 40V, 50V, 63V, 100V, 160V, 200V, 250V, 400V,
and 450V. It is unusual to find electrolytic capacitors with a higher voltage rating than
500V.

Temperature rating
Ceramic and MLC capacitors are generally rated for a wide range of temperatures,
but aluminum electrolytics are far less tolerant of high temperatures, and are typically
rated as 80 or 105° C.

ESR (equivalent series resistance)
The temperature rating becomes important when the capacitors are being rapidly
charged and discharged, as a capacitor will always have an internal resistance called
its equivalent series resistance (ESR) that causes heating during charging and dis‐
charging.

Small-value MLC capacitors generally have a very low ESR of little more than the
resistance caused by their leads. This allows them to charge and discharge extremely
quickly. A high-value electrolytic capacitor might have an ESR of a few hundred mΩ.
This both limits the speed at which the capacitors can charge and discharge and
causes a heating effect.

See Also
For the use of electrolytic capacitors to smooth out voltage ripple from power sup‐
plies, see Recipe 7.4.

3.3 Read Capacitor Packages
Problem
You have a capacitor and want to identify its value.

3.3 Read Capacitor Packages | 35

Solution
Small, low-value SMD capacitors are generally unmarked, and so you should label
them as soon as you buy them.

Electrolytic capacitors usually have their capacitance value and voltage rating printed
on the package. Polarized through-hole electrolytic capacitors are also usually sup‐
plied with the positive lead longer than the negative lead and the negative lead
marked with a minus sign or a diamond symbol.

Most other capacitors use a numbering system similar to that of SMD resistors. The
value is usually three digits and a letter. The first two digits are the base value and the
third digit is the number of zeros to follow. The base value being the value in pF (pico
Farad; see Appendix D).

For example, a 100pF capacitor would have the three digits 101 (a 1, a 0, followed by
one further 0). A 100nF capacitor would be marked 104 (a 1, a 0, followed by four
further 0s); that is, 100,000 pF or 100nF.

The letter after the digits indicates the tolerance (J, K, or M for ±5%, ±10%, and
±20%, respectively).

Discussion
The number of standard values for capacitors is much smaller than for resistors. Gen‐
erally the values available are 10, 15, 22, 33, 47, and 68 followed by the necessary
number of zeros.

See Also
To read resistor color codes, see Recipe 2.1.

3.4 Connect Capacitors in Parallel
Problem
You want to combine capacitors to increase their overall capacitance.

Solution
Looking at Figure 3-7, you can see two capacitors in parallel double up on the surface
area of the conductive plates and therefore may correctly assume that the overall
capacitance is the sum of the two capacitances.

36 | Chapter 3: Capacitors and Inductors

Figure 3-7. Two Capacitors in Parallel

Discussion
It is actually quite common to place a number of capacitors in parallel to increase
the overall capacitance. It is especially common when smoothing a high-power
transformer-based power supply for, say, an audio amplifier where it is important to
remove as much ripple from the power supply as possible (see Recipe 7.2).

In such systems it is common to use a number of different capacitors of different
types and values in parallel to minimize the effects of ESR (see Recipe 3.2).

See Also
For capacitors in series, see Recipe 3.5.

3.5 Connect Capacitors in Series
Problem
You want to know why someone has combined capacitors in this unusual fashion.

Solution
When you connect two or more capacitors in series, the total value of capacitance is
calculated according to the following formula, which, interestingly, is very similar to
resistors in parallel:

Ctotal = 1
1

C1
+ 1

C2

Discussion
It is unusual to connect capacitors in series. Occasionally, this will be done as part of a
more complex circuit such as in Recipe 7.12.

3.5 Connect Capacitors in Series | 37

See Also
For capacitors in parallel, see Recipe 3.4.

3.6 Store Huge Amounts of Energy
Problem
Regular capacitors are not big enough for you.

Solution
Supercapacitors are low-voltage capacitors that have extremely high capacitances.
They are primarily used as energy-storage devices in situations that would otherwise
use rechargeable batteries.

They can have values up into the hundreds of F (Farads). Note that the top of the
capacitance range for an aluminum electrolytic is around 0.22F.

Discussion
Low (comparatively) value supercapacitors of perhaps a few F are sometimes used as
alternatives to rechargeable batteries or long-life lithium batteries to power ICs in
standby mode to retain memory in static RAM that would otherwise be lost, or to
power real-time clock (RTC) chips so a device using an RTC IC will keep the time if
it’s powered off for a while.

Extremely high-value supercapacitors are available that offer an alternative to
rechargeable batteries for larger capacity energy storage.

Supercapacitors with values of 500F or more can be bought for just a few dollars. The
maximum voltage for a supercapacitor is 2.7V so, for higher voltage use, the capaci‐
tors can be placed in series with special protection circuitry to ensure the 2.7V limit is
not exceeded as the bank of capacitors are charged.

Supercapacitors generally look like standard aluminum electrolytic capacitors. At
present, their energy storage is still quite a long way from that of rechargeable batter‐
ies and because they are capacitors, the voltage decreases much more quickly than
when discharging a battery.

See Also
See Recipe 3.7 to calculate the energy stored in super capacitors and normal capaci‐
tors.

38 | Chapter 3: Capacitors and Inductors

3.7 Calculate the Energy Stored in a Capacitor
Problem
You have charged up a capacitor to a certain voltage and want to know how much
energy the capacitor is storing.

Solution
The energy stored in a capacitor in J is calculated as:

E = CV2

2

Discussion
Taking a medium-sized electrolytic of 470µF at 35V the energy stored would be:

E = CV2

2 = 0 . 00047F × 35V2

2 = 0 . 29J

which is not very much energy. Since the energy storage is proportional to the square
of the voltage, the results for a capacitor of the same value but at 200V are much
more impressive:

E = CV2

2 = 0 . 00047F × 200V2

2 = 9 . 4J

For a 500F 2.7V supercapacitor, the results are even more impressive:

E = CV2

2 = 500F × 2 . 7V2

2 = 1822 . 5J = 1 . 822kJ

By way of comparison, a single 1.5V AA battery of 2000mAH stores around:

2A × 3600s × 1 . 5V = 10 . 8kJ

See Also
For information on rechargeable batteries, see Recipe 8.3.

3.7 Calculate the Energy Stored in a Capacitor | 39

3.8 Modify and Moderate Current Flow
Problem
You need a component that can filter parts of a signal or smooth out fluctuations.

Solution
An inductor is, at its simplest, just a coil of wire. At DC, it behaves just like any length
of wire and will have some resistance, but when AC flows through it, it starts to do
something interesting.

A change in current in one direction in an inductor causes a change in voltage in the
opposite direction. This effect is more marked the higher the frequency of the AC
flowing through the inductor. The net result of this is that the higher the frequency of
the AC, the more the inductor resists the flow of current. So as not to confuse this
effect with ordinary resistance, it is called reactance but it still has units of Ω.

The reactance X of an inductor can be calculated by the formula:

X = 2π f L

Where f is the frequency of the AC (cycles per second) and L is the inductance of the
inductor whose units are the Henry (H). This resistive effect does not generate heat
like a resistor, but rather returns the energy to the circuit.

The inductance of an inductor will depend on the number of turns of wire as well as
what the wire is wrapped around. So, very low-value inductors may be just a couple
of turns of wire without any core (called air-core inductors). Higher value inductors
will generally use an iron or more likely ferrite core. Ferrite is a magnetic ceramic
material.

The current-carrying capability of an inductor generally depends on the thickness of
the wire used in the coil.

Discussion
Inductors are used in switched mode power supplies (SMPS) where they are pulsed at
a high frequency (see Recipe 7.8 and Recipe 7.9). They are also used extensively in
radio-frequency electronics, where they are often combined with a capacitor to form
a tuned circuit (see Chapter 19).

A type of inductor called a choke is designed to let DC pass while blocking the AC
part of a signal. This prevents unwanted radio-frequency noise from infiltrating a cir‐
cuit. You will often find a USB lead has a lump in it near one end. This is a ferrite

40 | Chapter 3: Capacitors and Inductors

choke, which is just a cylinder of ferrite material that encloses the cables and increa‐
ses the inductance of the wire to a level where it can suppress high-frequency noise.

See Also
For more information on the use of inductors in SMPSs, see Recipe 7.8 and Recipe
7.9.

See Recipe 3.9 for more information on transformers.

3.9 Convert AC Voltages
Problem
You need a component that can convert AC voltages.

Solution
A transformer is essentially two or more inductor coils wrapped onto a single
core. Figure 3-8 shows the schematic diagram for a transformer that also gives a clue
as to how it works.

Figure 3-8. The Transformer

3.9 Convert AC Voltages | 41

A transformer has primary coils and secondary coils. Figure 3-8 shows one of each.
The primary coil is driven by AC, say the 110V from an AC outlet, and the secondary
is connected to the load.

The voltage at the secondary is determined by the ratio of the number of turns on the
primary to the number of turns on the secondary. Thus if the primary has 1000 turns
and the secondary just 100, then the AC voltage will be reduced by a factor of 10.

Figure 3-9 shows a selection of transformers. As you can see they come in a wide
range of sizes.

In Figure 3-9 there is a small high-frequency transformer on the left that was taken
from a disposable flash camera where it was used to step up pulsed DC (almost AC)
from a 1.5V battery to the 400V needed by a Xenon flash tube.

The type of transformer shown in the center is commonly used to step-down 110V
AC to a low voltage, say 6V or 9V.

Figure 3-9. A Selection of Transformers

The transformer on the right is also designed to step-down AC outlet voltages to
lower voltages. It is called a torroidal transformer and the primary and secondary
coils are wrapped around a single torroidal former (donut shaped arrangement of
iron layers), on top of each other. These transformers are often used in HiFi equip‐
ment where the noise found in most SMPSs is considered too high for high-end HiFi
amplifiers.

42 | Chapter 3: Capacitors and Inductors

Discussion
It used to be that if you wanted to power a low-voltage DC appliance such as a radio
receiver from an AC outlet, then you would first use a transformer to drop the 100V
AC at 60Hz to, say, 9V. You would then rectify and smooth the low-voltage AC into
DC.

These days, an SMPS (see Recipe 7.8) is normally used as transformers are expensive
and heavy items with iron and long lengths of copper-winding wire. However, trans‐
formers are still used in SMPS but operate at a very much higher frequency than
60Hz. Operating at a high frequency (often 100s of kHz) allows the transformers
to be much smaller and lighter than low-frequency transformers while retaining good
efficiency.

See Also
This video shows a torroidal transformer winding machine in action: https://
youtu.be/82PpCzM2CUg.

Recipe 7.1 describes how to use a transformer to convert one AC voltage to another.

3.9 Convert AC Voltages | 43

https://youtu.be/82PpCzM2CUg
https://youtu.be/82PpCzM2CUg

CHAPTER 4

Diodes

4.0 Introduction
The first diodes to be used in electronics were cat’s whisker detectors used in crystal
radios. These comprised a crystal of a semiconductor material (often lead sulphide or
silicon). The cat’s whisker is simply a bare wire that is held in an adjustable bracket
that touches the semiconductor crystal. By carefully moving the whisker around, at
certain points of contact the arrangement would act as a diode, only allowing current
to flow in one direction. This property is needed in a simple radio receiver to detect
the radio signal so that it can be heard (see Chapter 19).

Today diodes are much easier to use and come in all sorts of shapes and sizes.

4.1 Block the Flow of Current in One Direction
Problem
You want a component that allows current to flow one way but not the other.

Solution
A diode is a component that only allows current to flow through it in one direction.
It’s a kind of one-way valve if you want to think of it in terms of water running
through pipes, which of course is a simplification. In reality the diode offers very low
resistance in one direction and very high resistance in the other. In other words, the
one-way valve restricts the flow a tiny bit when open and also leaks slightly when
closed. But most of the time, thinking of a diode as a one-way valve for electrical cur‐
rent works just fine.

45

There are lots of specialized types of diodes, but let’s start with the most common and
basic diode, the rectifier diode. Figure 4-1 shows such a diode in a circuit with a bat‐
tery and resistor.

Figure 4-1. A Forward-biased Diode

In this case, the diode allows flow of current and is considered forward-biased. The
two leads of the diode are called the anode (abbreviated as “a”) and cathode (abbrevi‐
ated rather confusingly as “k”). For a diode to be forward-biased, the anode needs to
be at a higher voltage than the cathode, as shown in Figure 4-1.

One interesting property of a forward-biased diode is that unlike a resistor, the volt‐
age across it does not vary in proportion to the current flowing through it. Instead,
the voltage remains almost constant, no matter how much current flows through it.
This varies depending on the type of diode, but is generally about 0.5V.

In the case of Figure 4-1, we can calculate that the current flowing through the resis‐
tor will be:

I = V
R = 9V − 0 . 5V

1kΩ = 8 . 5mA

This is only 0.5mA less than if the diode were to be replaced with wire.

In Figure 4-2 the diode is facing the other direction. It is reverse-biased and conse‐
quently almost no current will flow through the resistor.

Figure 4-2. A Reverse-biased Diode

46 | Chapter 4: Diodes

Discussion
The diode’s one-way effect can be used to convert AC (Recipe 1.7) into
DC. Figure 4-3 shows the effect of a diode on an AC voltage source.

Figure 4-3. Rectification

This effect is called rectification (see Recipe 7.2). The negative part of the cycle is
unused. This still isn’t true DC because even though the voltage never becomes nega‐
tive it still swings from 0V up to a maximum and back down rather than remain con‐
stant. The next stage would be to add a capacitor in parallel with the load resistor that
would smooth out the signal to a flat and almost constant DC voltage.

See Also
For information on using diodes in power supplies, see Recipe 7.2 and Recipe 7.3.

4.2 Know Your Diodes
Problem
You want to know about the different types of diodes and their uses.

Solution
Figure 4-4 shows different types of diodes. Generally, the bigger the diode package,
the greater its power-handling capability. Most diodes are a black plastic cylinder with
a line at one end that points to the cathode (the end that should be more negative for
forward-biased operation).

The diode on the left of Figure 4-4 is an SMD. The through-hole diodes to the right
get larger, the higher the current rating.

4.2 Know Your Diodes | 47

Figure 4-4. A Selection of Diodes

Discussion
There are many different types of diodes. Unlike resistors that are bought as a partic‐
ular value resistor (say, 1kΩ) diodes are identified by the manufacturer’s part number.

Some of the most commonly used rectifier diodes are listed in Table 4-1.

Table 4-1. Common Diodes

Part Number Typical Forward Voltage Maximum Current DC Blocking Voltage Recovery Time

1N4001 0.6V 1A 50V 30µs

1N4004 0.6V 1A 400V 30µs

1N4148 0.6V 200mA 100V 4ns

1N5819 0.3V 1A 40V 10ns

The forward voltage, often abbreviated as Vf, is the voltage across the diode when
forward-biased. The DC-blocking voltage is the reverse-biased voltage that if excee‐
ded may destroy the diode.

The recovery time of a diode refers to how quickly the diode can switch from
forward-biased conducting to reverse-biased blocking. This is not instantaneous in
any diode and in some applications fast switching is needed.

48 | Chapter 4: Diodes

The 1N5819 diode is called a Schottky diode. These types of diodes have much lower
forward voltage and generate less heat.

See Also
You can find the datasheet for the 1N4000 family of diodes here: http://bit.ly/2lOtD71.

4.3 Use a Diode to Restrict DC Voltages
Problem
You need to use a diode to allow voltages up to a certain voltage to pass through.

Solution
Use a Zener diode.

When forward-biased, Zener diodes behave just like regular diodes and conduct. At
low voltages, when reverse-biased they have high resistance just like normal diodes.
However, when the reverse-biased voltage exceeds a certain level (called the break‐
down voltage), the diodes suddenly conduct as if they were forward-biased.

In fact, regular diodes do the same thing as Zener diodes but at a high voltage and not
a voltage that is carefully controlled. The difference with a Zener diode is that the
diode is deliberately designed for this breakdown to occur at a certain voltage (say,
5V) and for the Zener diode to be undamaged by such a “breakdown.”

Discussion
Zener diodes are useful for providing a reference voltage (see the schematic
in Figure 4-5). Note the slightly different component symbol for a Zener diode with
the little arms on the cathode.

Figure 4-5. Using a Zener Diode to Provide a Reference Voltage

The resistor R limits the current flowing through the Zener diode. This current is
always assumed to be much greater than the current flowing into a load across the
diode.

4.3 Use a Diode to Restrict DC Voltages | 49

http://bit.ly/2lOtD71

This circuit is only well suited to providing a voltage reference. A voltage reference
provides a stable voltage but with hardly any load current; for example, when the cir‐
cuit is used with a transistor as in Recipe 7.4. So a resistor value of, say, 1kΩ would, if
Vin was 12V, allow a current of:

I = V
R = 12 − 5

1000 = 7mA

The output voltage will remain roughly 5V whatever Vin is as long as it’s greater than
5V. To understand how this happens, imagine that the voltage across the Zener diode
is less than its 5V breakdown voltage. The Zener’s resistance will therefore be high
and so the voltage across it due to the voltage divider effect of R and the Zener will be
higher than the breakdown voltage. But wait, since the breakdown voltage is excee‐
ded it will conduct, bringing the Vout down to 5V. If it falls below that, the diode will
turn off and the Vout will increase again.

Zener diodes are also used to protect sensitive electronics from high-voltage spikes
due to static discharge or incorrectly connected equipment. Figure 4-6 shows how an
input to an amplifier not expected to exceed ±10V can be protected from both high
positive and negative voltages. When the input voltage is within the allowed range the
Zener will be high resistance and not interfere with the input signal, but as soon as
the voltage is exceeded in either direction the Zener will conduct the excess voltage
to ground.

Figure 4-6. Protecting Inputs from Over-Voltage

See Also
Although you would generally use a voltage-regulator IC (see Recipe 7.4), you can
use a Zener diode combined with a transistor to act as a voltage regulator.

4.4 Let There Be Light
Problem
You need a component that can generate light without using a lot of power.

50 | Chapter 4: Diodes

Solution
LEDs are like regular diodes in that when reverse-biased they block the flow of cur‐
rent, but when forward-biased they emit light.

The forward voltage of an LED is more than the usual 0.5V of a rectifier and depends
on the color of the LED. Generally a standard red LED will have a forward voltage of
about 1.6V.

Discussion
Figure 4-7 shows an LED in series with a resistor. The resistor is necessary to prevent
too much current from flowing through the LED and damaging it.

Figure 4-7. Powering an LED

An LED used as an illuminator will generally emit some light at 1mA but usually
needs about 20mA for optimum brightness. The LED’s datasheet will tell you its opti‐
mal and maximum forward currents.

As an example, if in Figure 6-5 the voltage source is a 9V battery and the LED has a
forward voltage of 1.6V, you can calculate the resistor value needed using Ohm’s Law:

R = V
I = 9V − 1 . 6V

20mA = 370Ω

370Ω is not a common resistor value (see Recipe 2.2) so you could pick a 360Ω resis‐
tor, in which case the current would be:

I = V
R = 9V − 1 . 6V

360Ω = 20 . 6mA

which would be just fine.

Finding suitable resistor values for LEDs to limit the current is such a common task
that there is really no need to go through these calculations all the time. In Recipe
14.1 you will find a practical recipe for rule-of-thumb selection of current-limiting
resistors.

4.4 Let There Be Light | 51

See Also
For information on driving different types of LED, see Chapter 14.

4.5 Detect Light
Problem
You want to take a reading of the light level.

Solution
Use a photodiode. You can also use a photoresistor (Recipe 2.8) or a phototransistor
(Recipe 5.7).

A photodiode is a diode that is sensitive to light. A photodiode usually has a transpar‐
ent window, but photodiodes designed for infrared use have a black plastic case. The
black plastic case is transparent to IR and usefully stops the photodiode from being
sensitive to visible light.

Photodiodes can be treated as little tiny photovoltaic solar cells. When illuminated
they generate a small current. Figure 4-8 shows how you can use a photodiode with a
resistor to produce a small voltage that you could then use in your circuits.

Figure 4-8. A Photodiode in Photovoltaic Mode

In this circuit, the voltage when illuminated brightly might only be 100mV.

The resistor is necessary so that the small current from the photodiode is converted
into a voltage (V=IR). Otherwise, any voltage that you measure will be depend on the
resistance (called impedance when not from a resistor) of whatever is measuring the
voltage. So, for example, a multimeter with an input impedance of 10MΩ would pro‐
vide a completely different (and lower) reading than a multimeter with a 100MΩ
input impedance.

R1 makes the voltage consistent. The impedance of whatever is connected to the out‐
put needs to be much higher in value than R1. If this is an op-amp (see Chapter 17)
then the input impedance is likely to be hundreds of MΩ and so will not alter the
output voltage appreciably. The smaller you make R1, the lower the output voltage
will be, so it’s a matter of striking a balance.

52 | Chapter 4: Diodes

Better sensitivity can be achieved by using the photodiode in a photoconductive
mode with a voltage source (Figure 4-9).

Figure 4-9. A Photodiode in Photoconductive Mode

Discussion
Photodiodes are quite linear, so they are often used in light meters. They also respond
pretty quickly and are used in telecommunications systems to sense optical signals.

See Also
Photoresistors (Recipe 12.6) and phototransistors (Recipe 5.7) tend to be used more
than photodiodes as they are more sensitive.

4.5 Detect Light | 53

CHAPTER 5

Transistors and Integrated Circuits

5.0 Introduction
Transistors are used to control the flow of a current. In digital electronics this control
takes the form of an on/off action, with the transistor acting as an electronic switch.

Transistors are also used in analog electronics where they can be used to amplify sig‐
nals in a linear manner. However, these days, a better (cheaper and more reliable) way
to do this is to use an integrated circuit (chip) that combines lots of transistors and
other components into a single convenient package.

This chapter does not cover all types of transistors or semiconductor devices, but
instead focuses on the most common ones, which are generally low in cost and easy
to use. There are other exotic devices like the unijunction transistors and SCRs
(silicon-controlled rectifiers) that used to be popular, but are now seldom used.

The other thing deliberately left out of this cookbook is the usual theory of how semi‐
conductors like diodes and transistors work. If you are interested in the physics of
electronics, there are many books and useful resources on semiconductor theory, but
just to make use of transistors, you do not really need to know about holes, electrons,
and doping N and P regions.

This chapter will concentrate on the use of transistors in their digital role. You will
find information on using transistors for analog circuits in Chapter 16.

In this chapter, you will encounter a wide variety of transistors. Appendix A includes
pinouts for the transistors used in this chapter and throughout the book.

55

5.1 Switch a Stronger Current Using a Weaker One
Problem
You want to incorporate digital switches into your project to control whether current
flows or not.

Solution
Use a low-cost bipolar junction transistor (BJT).

BJTs like the 2N3904 cost just a few cents and are often used with a microcontroller
output pin from an Arduino or Raspberry Pi to increase the current the pin can con‐
trol.

Figure 5-1 shows the schematic symbol for a BJT alongside one of the most popular
models of this kind of transistor, the 2N3904. The 2N3904 is in a black plastic pack‐
age called a TO-92 and you will find that many different low-power transistor models
come supplied in the TO-92 package.

The transistor is usually shown with a circle around it, but sometimes just the symbol
inside the circle is used.

Figure 5-1. A Bipolar Transistor Schematic Symbol and Actual Device

The three connections to the transistor in Figure 5-1 are from top to bottom:

• The collector—the main current to be controlled flows into the collector
• The base—the control connection

56 | Chapter 5: Transistors and Integrated Circuits

• The emitter—the main current flows out through the emitter

The main current flowing into the collector and out of the emitter is controlled by a
much smaller current flowing into the base and out of the emitter. The ratio of the
base current to the collector current is called the current gain of the transistor and is
typically somewhere between 100 and 400. So for a transistor with a gain of 100, a
1mA current flowing from base to emitter will allow a current of up to 100mA to flow
from collector to emitter.

Discussion
To get a feel for how such a transistor could be used as a switch, build the circuit
shown in Figure 5-2 using the breadboard layout shown in Figure 5-3. For help get‐
ting started with breadboard tutorial, see Recipe 20.1.

Figure 5-2. A Schematic for Experimenting with a Transistor

The push switch will turn the LED on when its pressed. Although this could be
achieved much more easily by just putting the switch in series with the LED and R2,
the important point is that the switch is supplying current to the transistor through
R1. A quick calculation shows that the maximum current that could possibly flow
through R1 and the base is:

I = V
R = 9V

10k = 0 . 9mA

In reality the current is less than this, because we are ignoring the 0.6V between the
base and emitter of the transistor. If you want to be more precise, then the current is
actually:

I = V
R = 9V − 0 . 6V

10k = 0 . 84mA

5.1 Switch a Stronger Current Using a Weaker One | 57

Figure 5-3. A Breadboard Layout for Experimenting with a Transistor

This tiny current flowing through the base is controlling a much bigger current of
roughly (assuming Vf of LED 1.8V):

I = V
R = 9V − 1 . 8V

270 = 26 . 67mA

Just like a diode, when the BJT is in use there will be an almost constant voltage drop
of around 0.5V to 1V between the base and emitter connections of the transistor.

Limiting Base Current

A resistor limiting the current that can flow into the base of the
transistor (R1 in Figure 5-2) is essential, because if too much cur‐
rent flows through the base then the transistor will overheat and
eventually die in a puff of smoke.
Because the base of a transistor only requries a small current to
control a much bigger current, it is tempting to think of the base as
having a built-in resistance to a large current flowing. This is not
the case, since it will draw a self-destructively large current as soon
as its base voltage exceeds 0.6V or so. So, always use a base resistor
like R1.

The BJT transistor described earlier is the most common and is an NPN type of tran‐
sistor (negative positive negative). This is not a case of the transistor being indecisive,

58 | Chapter 5: Transistors and Integrated Circuits

but relates to the fact that the transistor is made up like a sandwich with N-type (neg‐
ative) semiconductor as the bread and P-type (positive) semiconductor as the filling.
If you want to know what this means and understand the physics of semiconductors,
then take a look at https://en.wikipedia.org/wiki/Bipolar_junction_transistor.

There is another less commonly used type of BJT called a PNP (positive negative pos‐
itive) transistor. The filling in this semiconductor sandwich is negatively doped. This
means that everything is flipped around. In Figure 5-2 the load (LED and resistor) is
connected to the positive end of the power supply and switched on the negative side
to ground. If you were to use a PNP transistor the circuit would look like Figure 5-4.
You can find out more about using PNP transistors in Recipe 11.2.

Figure 5-4. Using a PNP Transistor

See Also
If the gain of your transistor is not enough, you may need to consider a Darlington
transistor (Recipe 5.2) or MOSFET (Recipe 5.3).

If, on the other hand, you need to switch a high-power load then you should consider
a power MOSFET (Recipe 5.3) or IGBT (Recipe 5.4).

You can find the datasheet for the popular low-power BJT, the 2N3904, here: http://
www.farnell.com/datasheets/1686115.pdf.

5.2 Switch a Current with Minimal Control Current
Problem
You need more gain than you can get with a BJT to switch a current with a very small
control current.

Solution
Use a Darlington transistor.

A regular BJT will typically only have a gain (ratio of base current to collector cur‐
rent) of perhaps 100. A lot of the time, this will be sufficient, but sometimes more

5.2 Switch a Current with Minimal Control Current | 59

https://en.wikipedia.org/wiki/Bipolar_junction_transistor
http://www.farnell.com/datasheets/1686115.pdf
http://www.farnell.com/datasheets/1686115.pdf

gain is required. A convenient way of achieving this is to use a Darlington transistor,
which will typically have a gain of 10,000 or more.

A Darlington transistor is actually made up of two regular BJTs in one package as
shown in Figure 5-5. Two common Darlington transistors are shown next to the
schematic symbol. The smaller one is the MPSA14 and the larger the TIP120.
See Recipe 5.5 for more information on these transistors.

Figure 5-5. Darlington Transistors

The overall current gain of the pair of transistors in this arrangement is the gain of
the first transistor multiplied by the gain of the second. It’s easy to see why this is the
case, as the base of the second transistor is supplied with current from the collector of
the first.

Discussion
Although you can use a Darlington transistor in designs just as if it were a single BJT,
one effect of arranging the transistors like this is that there are now two voltage drops
between the base and emitter. The Darlington transistor behaves like a regular NPN
BJT with an exceptionally high gain but a base-emitter voltage drop of twice that of a
normal BJT.

A popular and useful Darlington transistor is the TIP120. This is a high-power device
that can handle a collector current of up to 5A.

See Also
You can find the datasheet for the TIP120 here: http://bit.ly/2mHBQy6 and the
MPSA14 here: http://bit.ly/2mI1vXF.

60 | Chapter 5: Transistors and Integrated Circuits

http://bit.ly/2mHBQy6
http://bit.ly/2mI1vXF

5.3 Switch High Current Loads Efficiently
Problem
You need to switch really heavy and noisy loads like those found in motors and you
need to do it efficiently without generating a lot of heat.

Solution
Use a MOSFET.

MOSFETs (metal-oxide semiconductor field effect transistors) do not have an emit‐
ter, base, and collector, but rather a source, gate, and drain. Like BJTs, MOSFETs
come in two flavors: N-channel and P-channel. It is the N-channel that is most used
and will be described in this recipe. Figure 5-6 shows the schematic symbol for an N-
channel MOSFET with a couple of common MOSFETs next to it. The larger transis‐
tor (in a package called TO-220) is an FQP30N06 transistor capable of switching 30A
at 60V. The hole in the TO-220 package is used to bolt it to a heatsink, something that
is only necessary when switching high currents. The small transistor on the right is
the 2N7000, which is good for 500mA at 60V.

Figure 5-6. MOSFETs

Rather than multiply a current in the way that a BJT does, there is no electrical con‐
nection between the gate and other connections of the MOSFET. The gate is separa‐
ted from the other connections by an insulating layer. If the gate-drain voltage
exceeds the threshold voltage of the MOSFET, then the MOSFET conducts and a
large current can flow between the drain and source connections of the MOSFET.
The threshold voltage varies between 2V and 10V. MOSFETs designed to work with
digital outputs from a microcontroller such as an Arduino or Raspberry Pi are called
logic-level MOSFETs and have a gate-threshold voltage guaranteed to be below 3V.

If you look at the datasheet for a MOSFET you will see that it specifies on and off
resistances for the transistor. An on resistance might be as low as a few mΩ and the
off resistance many MΩ. This means that MOSFETs can switch much higher currents
than BJTs before they start to get hot.

5.3 Switch High Current Loads Efficiently | 61

You can calculate the heat power generated by the MOSFET using the current flowing
through it and its on resistance using the following formula. For more information
on power, see Recipe 1.6.

P = I2Ron

Discussion
The schematic and breadboard layout used in Recipe 5.1 needs a little modification to
be used to experiment with a MOSFET. The variable resistor is now used to set the
gate voltage from 0V to the battery voltage. The revised schematic and breadboard
layouts are shown in Figures 5-7 and 5-8, respectively.

Figure 5-7. Schematic for Experimenting with a MOSFET

Figure 5-8. Breadboard Layout for Experimenting with a MOSFET

62 | Chapter 5: Transistors and Integrated Circuits

With the trimpot’s knob at the 0V end of its track, the LED will not be lit. As the gate
voltage increases to about 2V the LED will start to light and when the gate voltage
gets to about 2.5V the LED should be fully on.

Try disconnecting the end of the lead going to the slider of the pot and touch it to the
positive supply from the battery. This should turn the LED on, and it should stay on
even after you take the lead from the gate away from the positive supply. This is
because there is sufficient charge sitting on the gate of the MOSFET to keep its gate
voltage above the threshold. As soon as you touch the gate to ground, the charge will
be conducted away to ground and the LED will extinguish.

Since MOSFETs are voltage- rather than current-controlled devices you might be sur‐
prised to find that under some circumstances you do have to consider the current
flowing into the gate. That is because the gate acts like one terminal of a capacitor.
This capacitor has to charge and discharge and so when pulsed at high frequency the
gate current can become significant. Using a current-limiting resistor to the gate will
prevent too much current from flowing.

Another difference between using a MOSFET and a BJT is that if the gate connection
is left floating, then the MOSFET can turn on when you aren’t expecting it. This can
be prevented by connecting a resistor between the gate and source of the MOSFET.

See Also
To use MOSFETs with a microcontroller output, see Recipe 11.3.

To use a MOSFET for polarity protection, see Recipe 7.17.

For level shifting using a MOSFET, see Recipe 10.17.

For the use of heatsinks, see Recipe 20.7.

5.4 Switch Very High Voltages
Problem
You need much more power.

Solution
An IGBT (insulated gate bipolar transistor) is an exotic type of transistor found in
high-power, high-voltage switching applications. They are fast switching, and gener‐
ally are particularly well specified when it come to operating voltage. Switching vol‐
tages of 1000V are not uncommon.

A BJT has base, emitter, and collector; a MOSFET has a gate, source, and drain; and
an IGBT combines the two, having a gate, emitter, and collector. Figure 5-9 shows the

5.4 Switch Very High Voltages | 63

schematic symbol for an IGBT alongside two IGBTs. The smaller of the two
(STGF3NC120HD) is capable of switching 7A at 1.2kV and the even bigger one
(IRG4PC30UPBF) 23A at 600V.

Figure 5-9. The Schematic Symbol for an IGBT and Two IGBTs

Discussion
IGBTs are voltage-controlled devices just like a MOSFET, but the switching side of
the transistor behaves just like a BJT. The gate of an IGBT will have a threshold volt‐
age just like a MOSFET.

IGBTs are sometimes used in the same role as high-power MOSFETs but have the
advantage over MOSFETs of being able to switch higher voltages at equally large cur‐
rents.

See Also
For information on BJTs see Recipe 5.1 and for MOSFETS see Recipe 5.3.

You can find the datasheet for the STGF3NC120HD here: http://bit.ly/2msNM6v.

The IRG4PC30UPBF datasheet is here: http://bit.ly/2msXTb9.

5.5 Choosing the Right Transistor
Problem
There are just so many transistors to choose from, how do you pick the right one?

Solution
Stick to a basic set of go-to transistors for most applications until you have more
unusual requirements and then find something that fits the bill.

A good set of go-to transistors is shown in Table 5-1.

64 | Chapter 5: Transistors and Integrated Circuits

http://bit.ly/2msNM6v
http://bit.ly/2msXTb9

Table 5-1. A Useful Set of Transistors

Transistor Type Package Max. Current Max. Volts

2N3904 Bipolar TO-92 200mA 40V

2N7000 MOSFET TO-92 200mA 60V

MPSA14 Darlington TO-92 500mA 30V

TIP120 Darlington TO-220 5A 60V

FQP30N06L MOSFET TO-220 30A 60V

When shopping for an FQP30N06L, make sure the MOSFET is the “L” (for logic)
version, with “L” on the end of the part name; otherwise, the gate-threshold voltage
requirement may be too high to connect the gate of the transistor to a microcontrol‐
ler output especially if it is operating at 3.3V.

The MPSA14 is actually a pretty universally useful device for currents up to 1A,
although at that current there is a voltage drop of nearly 3V and the device gets up to
a temperature of 120°C! At 500mA, the voltage drop is a more reasonable 1.8V and
the temperature 60°C.

To summarize, if you only need to switch around 100mA then a 2N3904 will work
just fine. If you need up to 500mA, use an MPSA14. Above that, the FQP30N06L is
probably the best choice, unless price is a consideration, because the TIP120 is con‐
siderably cheaper.

Transistor Datasheets
When you are designing a circuit, you really need to know exactly how your compo‐
nent will behave before you start experimenting.

All components have datasheets that at the very least describe their absolute maxi‐
mum ratings. This information tells you what you need to do to effectively destroy
the components.

For example, if you look at the datasheet for the 2N3904 transistor, you will see a sec‐
tion called absolute maximum ratings that gives you the information shown
in Table 5-2.

Table 5-2. 2N3904 Absolute Maximum Ratings

Symbol Parameter Value Units
Vcbo Collector-Base Voltage 60 V
Ic Collector Current 200 mA
Ptot Total Dissipation at 25 degrees C 625 mW
Tj Max. Junction Temperature 150 C

5.5 Choosing the Right Transistor | 65

As long as you stay below these limits, the datasheet is effectively guaranteeing that
the device will work okay. Of course, it’s always a good idea to err on the side of cau‐
tion.

The datasheet will also have a section called electrical characteristics that tells you
how the device will work under normal circumstances. For a transistor, the one you
will be most interested in is the DC gain. The 2N3904 datasheet DC gain is shown in
Table 5-3.

Table 5-3. 2N3904 DC Current Gain

Symbol Parameter Test Conditions Min Typ Max Unit
hFE DC Current Gain Ic=0.1mA (all Vce=1V)

Ic=1mA
Ic=10mA
Ic=100mA

60
80
100
30

 300

This tells you that at 10mA the minimum gain you can expect is 100, i.e., with a col‐
lector current of 10mA you will only need 0.1mA of base current. Notice how this
falls right down to 30 with 100mA collector current. This implies that you will need a
base current of 3.33mA.

In reality the gain may be much greater than this, but you should not assume any‐
thing better in your designs or you may be relying on the characteristics of one partic‐
ular transistor. This means design may not work when someone else comes to make it
using the same model of transistor from a different manufacturing batch.

Discussion
Reasons for straying from the transistors listed in Table 5-1 include:

• You need to switch at high frequency—look for BJTs or FETs described as RF.
• You need to switch higher voltages—BJTs and MOSFETs are readily available at

quite high voltages up to 400V, but for even higher voltages look at IGBTs.
• For high currents, MOSFETs take a beating. Look for devices with the lowest pos‐

sible resistance as this will be the main thing that determines how hot it gets and
therefore how much current it can cope with before it fails.

See Also
For information on BJTs see Recipe 5.1, for MOSFETs Recipe 5.3, and for
IGBTs Recipe 5.4.

To decide on a transistor for switching with an Arduino or Raspberry Pi, see Recipe
11.5.

66 | Chapter 5: Transistors and Integrated Circuits

Once you start to push transistors beyond a light load, you will find that they start to
get hot. If they get too hot they will burn out and be permanently destroyed. To avoid
this, either use a transistor with greater current-handling capability or fix a heatsink
to it (Recipe 20.7).

5.6 Switching Alternating Current
Problem
You need a transistor that can switch AC.

Solution
TRIAC (TRIode for alternating current) is a semiconductor-switching device
designed specifically to switch AC.

BJT and MOSFETs are not useful for switching AC. They can only do that if you split
the positive and negative halves of the cycle and switch each with a separate transis‐
tor. It is far better to use a TRIAC that can be thought of as a switchable pair of back-
to-back diodes.

Figure 5-10 shows how a TRIAC might be used to switch a high AC load using a
small current switch. A circuit like this is often used so that a small low-power
mechanical switch can be used to switch a large AC current.

Figure 5-10. Switching AC with a TRIAC

Switching High-Voltage AC

The 110V or 220V AC that you find in your home kills thousands
of people every year. It can burn you and it can stop your heart, so
please do not attempt to build the circuits described here unless
you are absolutely sure that you can do so safely.
Also, see Recipe 21.12.

5.6 Switching Alternating Current | 67

Discussion
When the switch is pressed a small current (tens of milliamps) flows into the gate of
the TRIAC. The TRIAC conducts and will continue conducting until the AC crosses
zero volts again. This has the benefit that the power is switched off at low power
when the voltage is close to zero, reducing the power surges and electrical noise that
would otherwise occur if switching inductive loads like motors.

However, the load could still be switched on at any point in the circuit, generating
considerable noise. Zero-crossing circuits (see Recipe 5.9) are used to wait until the
next zero crossing of the AC before turning the load on, reducing electrical noise fur‐
ther.

See Also
See Recipe 1.7 on AC.

For information on solid-state relays using TRIACs, see Recipe 11.10.

TRIACs are usually supplied in TO-220 packages. For pinouts, see Appendix A.

5.7 Detecting Light with Transistors
Problem
You want to measure light levels using something other than a photoresistor or pho‐
todiode.

Solution
A phototransistor is essentially a regular BJT with a translucent top surface that
allows light to reach the actual silicon of the transistor. Figure 5-11 shows how you
can use a phototransistor to produce an output voltage that varies as the level of light
falling on the transistor changes.

Figure 5-11. Using a Phototransistor

68 | Chapter 5: Transistors and Integrated Circuits

When the photoresistor is brightly illuminated, it will turn on and conduct, pulling
the output voltage toward 0V. In complete darkness, the transistor will be completely
off and the output voltage will rise to the supply voltage of 5V.

Discussion
Some phototransistors look like regular transistors with three pins and a clear top
and others (like the TEPT5600 used in Figure 5-11) come in LED-like packages with
pins for the emitter and collector, but no pin for the base. For phototransistors that
look like LEDs, the longer pin is usually the emitter. Phototransistors are nearly
always NPN devices.

As a light-sensing element, the phototransistor is more sensitive than a photodiode
and responds more quickly than a photoresistor. Phototransistors have the advantage
over photoresistors that they are manufactured using cadmium sulphide and some
countries have trade restrictions on devices containing this material.

See Also
The output of the circuit of Figure 5-11 can be directly connected to an Arduino’s
analog input (Recipe 10.12) to take light readings as an alternative to using a photore‐
sistor (Recipe 12.3 and Recipe 12.6).

For the TEPT5600 datasheet, see http://bit.ly/2m8vhS0.

5.8 Isolating Signals for Safety or Noise Elimination
Problem
For safety or noise immunity reasons, you want a signal to flow from one part of a
circuit to another without there being any electrical connection.

Solution
Use an opto-coupler, which consists of an LED and phototransistor sealed in a single
lightproof package.

Figure 5-12 shows how an opto-coupler can be used. When a voltage is applied across
the + and – terminals, a current flows through the LED and it lights, illuminating the
phototransistor and turning on the transistor. This brings the output down to close to
0V. When the LED is not powered, the transistor is off and R1 pulls the output up
to 5V.

The important point is that the lefthand side of the circuit has no electrical connec‐
tion to the righthand side. The link is purely optical.

5.8 Isolating Signals for Safety or Noise Elimination | 69

http://bit.ly/2m8vhS0

Figure 5-12. An Opto-Coupler

Discussion
When the sensing transistor is a TRIAC (see Recipe 5.6) the device is known as an
opto-isolator rather than opto-coupler and the low-power TRIAC inside the opto-
isolator can be used to switch AC using a more powerful TRIAC as shown
in Figure 5-13. This circuit is often called an SSR (solid-state relay) as it performs
much the same role as a relay would in AC switching, but without the need for any
moving parts.

Figure 5-13. An SSR Design

Switching AC Is Dangerous

You should not work with high voltages unless you are completely
sure that you can do so safely and understand the risks. See Recipe
21.12 for more information on working with high voltages.

R1 is used to limit the current flowing into the gate of the opto-isolator and R2 keeps
the TRIAC MT1 turned off until the TRIAC in the opto-isolator is turned on by light
falling on it because of the LED being energized. R3 and C1 form a filter to reduce the
RF noise that would otherwise be generated by the switching. Note that R3 and C1
must both be rated to cope with the peak AC voltage (use 400V devices).

70 | Chapter 5: Transistors and Integrated Circuits

The MOC3032 package also contains a zero-crossing switch that stops the TRIAC
from turning on until the AC crosses 0V. This greatly reduces the interference gener‐
ated by the switching circuit.

See Also
For SSRs use opto-isolators, see Recipe 11.10.

For the MOS3032 datasheet, see http://www.farnell.com/datasheets/2151740.pdf.

For relays that also isolate the control side from the power side, see Recipe 6.4.

5.9 Discover Integrated Circuits
Problem
You want to know about ICs and how to use them.

Solution
ICs will be involved in almost every project you are likely to work on. Be it a micro‐
controller or special-purpose chip for motor control or a radio receiver or audio
amplifier, there is probably a chip for it. There is little point in building a circuit out
of transistors and other components if there is a single IC that will do the job. You
will find many different sorts of IC scattered throughout this book.

ICs come in many different shapes and sizes. Figure 5-14 shows a selection of them.

Figure 5-14. A Selection of ICs

5.9 Discover Integrated Circuits | 71

http://www.farnell.com/datasheets/2151740.pdf

Discussion
ICs can have as few as three pins or hundreds of pins. You will often find that the
same basic IC is available in different packages, both SMD and through-hole pack‐
ages. This can be very useful if you plan to prototype your design using a solderless
breadboard before manufacturing using SMD components.

Another way of using SMDs on a solderless breadboard is to use a “breakout board”
that allows you to solder the SMD onto a board and then plug that board into the
breadboard. There is an example of this shown in Figure 18-5.

ICs are identified by their part number, which is often difficult to read, so it’s a good
idea to label the bag the IC comes in.

ICs with more than three pins will have a little dot next to pin 1. If there is no dot,
then there will be a notch that indicates the top of the IC. The pin numbering then
moves down the IC to the bottom continuing with the bottom pin of the righthand
side. For some example IC pinouts, see Appendix A.

See Also
You can find a list of the ICs used in this book in “Integrated Circuits” on page 414.

72 | Chapter 5: Transistors and Integrated Circuits

CHAPTER 6

Switches and Relays

6.0 Introduction
Mechanical switches allow the flow of current to be turned on and off by flipping a
toggle from one position to another or by pressing a button. They are so simple that
they require little in the way of explanation other than to describe the various types of
switches available and to highlight their limitations.

Relays long predate transistors as a means of using a small current to switch to a
much bigger one. However, their flexibility and separation of the control side from
the switching side mean that they are still in use today.

6.1 Switch Electricity Mechanically
Problem
You want to understand how a switch works.

Solution
Switches generally work by mechanically bringing together two metal contacts.
Figure 6-1 shows how this might work.

When the push button is pressed, it presses the sprung metal contact at the top to the
fixed contact in the base of the switch.

73

Figure 6-1. The Mechanical Construction of a Push Switch

Discussion
There are several things that can make switching less straightforward than you might
expect:

1. When switching high voltages there may be arcing (sparking) just before the two
contacts connect and even more so when they disconnect. This causes heat and
can damage the contacts.

2. When switching high currents at any voltage, there is a danger of the contacts
spot-welding themselves together as the contact is made, preventing the switch
from turning off again.

3. A continuous high current through a switch will cause the contacts (which have a
small resistance) to heat up, shortening the life of the switch.

4. The contacts often bounce, making and releasing contact a few times in very
rapid succession before settling. This can cause a problem when used with soft‐
ware that toggles something on and off. In Recipe 12.1 you will see how a switch
press can be debounced.

For these reasons switches have a maximum voltage and current, and there are often
separate maximums for switching AC and DC.

See Also
For a discussion of the various types of switch, see Recipe 6.2.

74 | Chapter 6: Switches and Relays

6.2 Know Your Switches
Problem
You want to understand what types of switches are available and how to use them.

Solution
Figure 6-2 shows a selection of switches.

Figure 6-2. A Selection of Switches

The switches from left to right are:

• A tactile push switch. This is probably the most commonly used switch in com‐
mercial products. They are low-cost circuit board–mountable push switches.

• A panel mount push switch. These are good for creating one-off projects as they
can just be mounted into a hole drilled into an enclosure.

• A slide switch. Moving the slider connects the center contact to either the left or
right pins.

• Microswitch. The hinged lever and mounting holes make it easy to attach to a
mechanical assembly. Because they have a hinged lever, they do not need much
force to operate. These switches are durable and reliable and often built into
microwave ovens to turn off the power if the door is opened.

• A toggle switch. These are the classic on/off switches.

6.2 Know Your Switches | 75

Discussion
If you are designing a project, then you are probably most likely to be using a micro‐
controller of some sort, in which case a simple push switch is all that is required. Even
if you have a situation where you might want to use a switch to select between two
options, chances are you would use a pair of push switches and some feedback as to
which is selected in a display.

Slide and toggle switches have mostly been relegated to the role of switching power
on and off to the project, although you will occasionally find them on circuit boards
as “selector” switches.

Toggles (and other switches) are available in many different switching configurations.
Some of those described include DPDT, SPDT, SPST, and SPST. These letters stand
for:

• D—Double
• S—Single
• P—Pole
• T—Throw

A DPDT switch is double pole, double throw. The word pole refers to the number of
separate switch elements that are controlled from the one mechanical lever. So, a
double-pole switch can switch two things on and off together. A single-throw switch
can only open or close a contact (or two contacts if it is a double pole). However, a
double-throw switch can make the common contact be connected to one of two other
contacts. Figure 6-3 shows some of these configurations.

As seen in Figure 6-3 when drawing a schematic with a double-pole switch, it is com‐
mon to draw the switch as two switches (S1a and S1b) and connect them with a dot‐
ted line to show that they are linked mechanically.

The matter is further complicated because you can have three poles or more on a
switch, and double-throw switches are sometimes sprung, and do not stay in one or
both of these positions. They may also have a center-off position where the common
contact is not connected to any other contact.

Another kind of switch that you may encounter is the rotary switch. This has a knob
that can be set to a number of positions. If you have a multimeter, then this is the
kind of switch that you will use to select the range. Such switches are not often used.
Rotary encoders coupled with a microcontroller (Recipe 12.2) are the more modern
way of making a selection using a control knob that you turn.

76 | Chapter 6: Switches and Relays

Figure 6-3. Switch Poles and Throws

See Also
To use switches with an Arduino or Raspberry Pi, see Recipe 12.1.

6.3 Switching Using Magnetism
Problem
You want to turn something on when a magnet is brought near.

Solution
A reed switch is made up of a pair of contacts running parallel to each other that are
close but not touching. The contacts are enclosed in a glass capsule and when a mag‐
net is brought close to the contacts they are drawn together, closing the switch.

Figure 6-4 shows a reed switch with and without a magnet next to it.

6.3 Switching Using Magnetism | 77

Figure 6-4. Switch Poles and Throws

Discussion
Reed switches are often found in intruder alarms on doors and windows. A fixed
magnet is attached to the door and the reed switch to the door frame. When the door
is opened, the magnet moves away from the reed switch, triggering the alarm.

See Also
Reed switches are also found in reed relays but are rarely used these days.

6.4 Rediscover Relays
Problem
You want to understand electromechanical relays and how to use them.

Solution
An electromechanical relay has two parts, a coil that acts as an electromagnet and
switch contacts that close when the coil is energized. Figure 6-5 shows a relay, along
with the pinout of the relay and a photo of an actual relay.

Figure 6-5. A Relay

78 | Chapter 6: Switches and Relays

https://en.wikipedia.org/wiki/Reed_relay

Discussion
Although somewhat old-fashioned, relays are still in use today. They are equally
happy switching AC or DC and are easily interfaced to a microcontroller.

If you take a relay apart, you will probably see something like Figure 6-6.

Figure 6-6. Inside a Relay

Here you can clearly see the coil that forms the electromagnet that when energized
will move the contacts seen at the top.

The electromagnet of a relay is a big coil of wire and when released will produce a
voltage spike that should be snubbed using a diode (see Recipe 11.9).

See Also
See Recipe 11.9 for information on using a relay with an Arduino or Raspberry Pi.

Today SSRs are often used in place of electromechanical relays (see Recipe 11.10).

6.4 Rediscover Relays | 79

CHAPTER 7

Power Supplies

7.0 Introduction
Anything electronic needs a source of power. This may be as simple as a battery, but
often will involve reducing high-voltage AC to the normal 1–12V DC that most elec‐
tronics use.

Sometimes you need to generate higher voltages from a low-voltage battery. This may
be stepping up the supply from a single 1.5V AA battery to a 6 or 9V, or it may be to
generate much higher voltages for applications such as the 400V to 1.5kV supply
needed by Geiger-Müller tubes.

The ultimate high-voltage power supply is a solid-state Tesla coil (see Recipe 7.15).

This is the first chapter where you will encounter a fair selection of ICs. When using
an IC that you are not familiar with, your first port of call should be its datasheet. It
will not only tell you how to avoid destroying it (by making sure you do not exceed
its maximum ratings) but will also tell you how it behaves and if you are lucky will
often include “reference designs” that are complete circuits that use the chip in a
practical situation. These designs are developed by the chip manufacturer to show
you how to use the IC, and many of the recipes in this chapter start from such refer‐
ence designs.

If the datasheet for the IC does not include such useful designs, then the next thing to
search for is “application notes” for the IC. This will often expand the rather terse and
scientific-looking datasheet into practical circuits using the IC.

81

7.1 Convert AC to AC
Problem
You want to know how to convert AC at one voltage to another voltage.

Solution
Use a transformer (see Recipe 3.9).

When buying a transformer designed for 60Hz AC, you will often find the windings
in an arrangement something like the one shown in Figure 7-1.

Figure 7-1. A Transformer Designed for AC

This has two identical primary coils and two identical secondary coils, all wound on
the same former (laminated iron frame). This allows some flexibility in how the
transformer is used. For example, US electricity is 110V whereas much of the world
uses 220V AC. If you are designing a product and need the same low-voltage AC out‐
put whether the input is 100V or 220V, then two primary coils allow you to do this if
you power the primaries in parallel for 110V and series for 220V.

82 | Chapter 7: Power Supplies

The dual secondaries provide similar flexibility to wire in series for double the output
voltage.

Discussion
Transformers are only rated to handle a certain amount of power. The resistance of
the windings causes them to heat as current flows through them, and if things get too
hot the insulation on the wire will break down and the transformer will fail.

A transformer will normally be rated as so many VA (volt amps). For most loads con‐
nected to a transformer 1VA is the same as 1Watt, but if large inductive loads like
motors are being driven, then the current and voltage become out of phase and the
apparent power will be lower than the VA rating.

See Also
For an introduction to transformers, see Recipe 3.9.

Reducing the AC voltage is often the first step in making an unregulated power sup‐
ply, which is the topic of Recipe 7.2.

7.2 Convert AC to DC (Quick and Dirty)
Problem
You want to reduce AC to low-voltage DC, but it’s OK if the DC voltage rises and falls
a little depending on the load current.

Solution
Use an AC step-down transformer (see Recipe 7.1) and then rectify and smooth the
output.

Figure 7-2 shows one schematic for the simplest method of achieving this.

Figure 7-2. A Basic Unregulated AC-to-DC Power Supply

The output voltage in Figure 7-2 is shown as 9V. This will be 1.42 (square root of 2) of
the stated output voltage of the transformer.

7.2 Convert AC to DC (Quick and Dirty) | 83

The diode D rectifies the low-voltage AC from the transformer (see Recipe 4.1). The
capacitor C then smooths this out to a constant DC that theoretically will be the peak
voltage from the cathode of the diode. The diode will prevent the capacitor from dis‐
charging back through the transformer and so once it is at the peak voltage it will stay
there.

Discussion
The schematic of Figure 7-2 is missing any kind of load. The capacitor is being
charged to the peak voltage, but nothing is using that charge. When you add a load to
the output as shown in Figure 7-3 the capacitor will still be receiving its kicks of volt‐
age from the diode and transformer, but now it will be discharging through the load
at the same time.

Figure 7-3. A Basic Unregulated AC-to-DC Power Supply

When using power supplies you will hear the use of the word “load,” which is the
thing that is being powered by the power supply. When thinking about how the
power supply will operate, you can just think of this load as a resistance. In Figure 7-3
the load is represented by R.

The characteristic voltage drop during each cycle due to the load discharging C is
called the ripple voltage.

The size of this ripple voltage can be calculated from the load current and also from
the size of the capacitor according to this formula:

Vripple = I
2 f C

where I is the current in amps, f is the AC frequency (60Hz), and C is the capacitance
in Farads.

As an example, if the load current is 100mA, a 1000µF capacitor would reduce the
ripple voltage to:

Vripple = I
2 f C = 0 . 1A

2x60Hz × 0 . 001F = 0 . 833V

84 | Chapter 7: Power Supplies

Notice that the ripple voltage is proportional to the load current, so in the preceding
example, a current of 1A would result in a ripple voltage of 8.3V!

This state of affairs can be improved by using a full-wave rectifier as described
in Recipe 7.3, which effectively doubles the frequency f in the preceding formula,
halving the ripple voltage.

See Also
For full-wave rectification, see Recipe 7.3.

7.3 Convert AC to DC with Less Ripple
Problem
The half-wave rectification of Recipe 7.2 is not very efficient. You want to reduce the
ripple voltage by using full-wave rectification.

Solution
There are two solutions to this:

• If you have a center-tapped or dual secondary transformer, you just need two
diodes for full-wave rectification.

• If you only have a single secondary winding, you can use four diodes as a bridge
rectifier.

Full-wave rectification with dual windings
Figure 7-4 shows how you can make use of both the positive and negative halves of
the AC cycle.

Figure 7-4. Full-wave Rectification using Dual Secondary Windings

The secondary windings are in serial, with the central connection between the wind‐
ings becoming the ground of the DC output. When the end of the winding connected
to D1 is at its maximum, the end of the winding connected to D2 will be at its mini‐
mum (greatest negative value). D1 and D2 will take it in turn to provide positive volt‐
age to the capacitor and the whole AC cycle can contribute to charging the capacitor.

7.3 Convert AC to DC with Less Ripple | 85

Figure 7-5 shows the full-wave rectified output before it is smoothed by the capacitor.
It is as if the negative cycles are being reversed.

Figure 7-5. Full-wave Rectification

Using a Bridge Rectifier
If you only have a single secondary winding, then you can still achieve full-wave rec‐
tification by using an arrangement of four diodes called a bridge rectifier. Figure 7-6
shows an unregulated DC power supply using a bridge rectifier.

Figure 7-6. Using a bridge rectifier

To understand how this works, imagine that point A is positive and B is negative.
This will allow current to flow from A through D2 to charge the capacitor. If there is a
load on the power supply, then the current from the negative side of the DC output
will be able to flow back through D4 to B.

When the AC cycle flips polarity and it is B that is positive and A negative, then the
positive DC output is supplied through D3 and returns to A through D1.

Discussion
In Recipe 7.2 you saw how the ripple voltage halves if you use full-wave rectification
rather than half-wave. The ripple voltage can be reduced by using very large capaci‐
tors, but in most circumstances it is better to use a regulated power supply as
described in Recipe 7.4 or a switched mode power supply (SMPS), as discussed
in Recipe 7.8.

You can buy a bridge rectifier as a single component that contains the four diodes
wired up in a bridge configuration. This simplifies the wiring of your power supply as
the bridge rectifier will have four terminals: two marked with a ~ to indicate AC
input as well as + and – terminals for the rectified output.

86 | Chapter 7: Power Supplies

See Also
To learn about half-wave rectification, see Recipe 4.1 and Recipe 7.2.

7.4 Convert AC to Regulated DC
Problem
You need a DC power supply that does not have any significant ripple voltage when
under load.

Solution
Use a linear voltage regulator IC after your unregulated DC power supply.

Figure 7-7 shows such a circuit. As you can see, the first stage of the project is just an
unregulated power supply.

Figure 7-7. A Regulated DC Power Supply

A linear voltage regulator IC such as the very common 7805 regulator has three pins:

• GND
• Vin—unregulated DC input
• Vout—regulated DC output

In the case of the 7805, the output voltage is fixed at 5V, so as long as the input volt‐
age is above about 7V the output will not have any significant ripple voltage (because
the regulator chip needs about 2V more than its output voltage of 5V to successfully
regulate the voltage).

At first sight, since C1 and C2 are in parallel, it is not immediately obvious why you
would need both. However, the reason is that C1 will be a large electrolytic capacitor
(470µF or more) and C2 will be a smaller MLC (typically 330nF) with a low ESR that
should be positioned as close as possible to the voltage regulator. C2 along with C3,
which is typically 100nF, are required by the voltage regulator IC to ensure that the
regulation remains stable.

7.4 Convert AC to Regulated DC | 87

Discussion
In selecting values for C2 and C3, it is best to consult the datasheet for the voltage-
regulator IC that you are using. This will normally specify values for the capacitors as
well as tell you other important properties of the voltage regulator such as:

• Maximum current that can be drawn from the output (1A for a 7805)
• Maximum input voltage (35V for a 7805)
• Dropout voltage—the number of volts by which the input should exceed the out‐

put for normal operation (2V for a 7805)

Some linear voltage regulators are described as low-dropout (LDO). These have a
much smaller dropout voltage than the 2V of the 7805. Some only need as little as
150mV more at the input than the output. If the input voltage of the regulator does
fall below the dropout voltage, the output voltage will gradually decrease as the input
voltage decreases. These regulators such as the LM2937, which has a dropout of 0.5V,
are great if your input voltage is unavoidably close to the desired output. Perhaps you
have a 6V battery and require a 5V output. Keeping the input voltage close to the out‐
put voltage also helps to reduce the heat generated by the regulator.

Voltage regulators are available in various packages from tiny surface-mount devices
to larger packages such as the TO-220 package of the 7805, which are designed to be
bolted to a heatsink for higher current use.

Most voltage regulators including the 7805 have protection circuitry that monitors
the device’s temperature and if it gets too hot, it drops the output voltage and there‐
fore limits the output current so that the device is not destroyed by the heat. Voltage
regulators also have a mounting hole designed to be attached to a heatsink. This is not
needed for low currents, but as the current gets higher a heatsink (see Recipe 20.7)
will become necessary.

The 05 part of the 7805 refers to the output voltage and, as you might expect, you can
also find 7806, 7809, 7812, and other voltages up to 24V. There is also a parallel 79XX
range of negative voltage regulators should you need to provide regulated positive
and negative power supplies as you do for some analog applications.

The 78LXX range of regulators are a lower-power (and smaller package) version of
the 78XX regulators.

See Also
You can find the datasheet for the 7805 here: https://www.fairchildsemi.com/data‐
sheets/LM/LM7805.pdf.

These days, most regulated AC-to-DC power supplies use SMPS design (Recipe 7.8).

88 | Chapter 7: Power Supplies

https://www.fairchildsemi.com/datasheets/LM/LM7805.pdf
https://www.fairchildsemi.com/datasheets/LM/LM7805.pdf

7.5 Converting AC to Variable DC
Problem
You need a regulated DC supply, but you want to be able to control the output volt‐
age.

Solution
Use an adjustable voltage regulator like the LM317.

Figure 7-8 shows a typical schematic for a variable output voltage regulator using the
LM317.

Figure 7-8. Using an LM317 Voltage Regulator

The output voltage of the LM317 varies according to the formula:

Vout = 1 . 25 1 +
R2
R1

This only holds true as long as R2 is relatively low resistance (less than 10kΩ).

So, if R1 is 270Ω and R2 is a 2kΩ pot, then at one end of the pot’s travel, the output
voltage will be:

Vout = 1 . 25 1 +
R2
R1

= 1 . 25 1 + 0
270 = 1 . 25V

When the pot’s knob is rotated fully the other way, the output voltage will be:

Vout = 1 . 25 1 +
R2
R1

= 1 . 25 1 + 2000
270 = 10 . 5V

7.5 Converting AC to Variable DC | 89

Discussion
As R2 increases, the output voltage also increases, but as with a fixed-output regula‐
tor, the regulator requires some spare voltage to do the regulating with. In the case of
the LM317, this is about 1.5V less than the input voltage.

Adjustable voltage regulators like the LM317 are available in a number of different-
sized packages and able to handle different amounts of current before their
temperature-protection circuitry kicks in to prevent damage to the IC.

See Also
You can find the datasheet for the LM317 here: http://www.ti.com/lit/ds/symlink/
lm317.pdf.

To use an LM317 as a current regulator, see Recipe 7.7.

7.6 Regulate Voltage from a Battery Source
Problem
You want a regulated fixed voltage (say 5V) from a battery-based power supply (say
9V).

Solution
Use a fixed linear voltage regulator as shown in Figure 7-9.

Figure 7-9. Using a Voltage Regulator with a Battery

Discussion
New batteries have a voltage that often starts a little higher than the rated voltage
(perhaps 9.5V for a 9V battery). This voltage drops as the battery is used. A 9V bat‐
tery will quickly fall to 8V and will probably only provide useful power until it falls to
perhaps 7.5V as it’s almost completely empty.

90 | Chapter 7: Power Supplies

http://www.ti.com/lit/ds/symlink/lm317.pdf
http://www.ti.com/lit/ds/symlink/lm317.pdf

A voltage regulator can be used to provide constant output voltage during the lifetime
of the battery and also to reduce voltage to a specific voltage needed for a microcon‐
troller (usually 3.3V or 5V).

Unlike the transformer-based DC supply of Recipe 7.4 a battery does not suffer from
ripple voltage, so the capacitor at the input to the voltage regulator can be omitted.
However, the capacitor at the output is still needed in most applications as the load is
likely to vary a lot and could cause instability in the regulator.

See Also
For more information on batteries, see Chapter 8.

7.7 Make a Constant-Current Power Supply
Problem
You need to provide constant current to a load, say, to a high-power LED.

Solution
Use an LM317 voltage regulator configured in constant-current mode as shown
in Figure 7-10.

Figure 7-10. Using an LM317 as a Constant-Current Source

For the LM317 chip, the output current is set by the value of R1 using the formula:

I = 1 . 2
R1

So, to limit the current to a maximum of 100mA the resistor value would be chosen
using:

R1 = 1 . 2
I = 1 . 2

0 . 1 = 12Ω

7.7 Make a Constant-Current Power Supply | 91

Discussion
This circuit will automatically raise and lower the output voltage to keep the current
at the desired level.

See Also
To see this circuit limit the power to a high-power LED, see Recipe 14.2.

7.8 Regulate DC Voltage Efficiently
Problem
You want to regulate your DC power supply in an energy-efficient manner that does
not generate too much heat.

Solution
Use a switching voltage-regulator IC like the one in the schematic shown in
Figure 7-11.

Figure 7-11. A Switching Voltage Regulator Using the LM2596

The LM2596 can provide a regulated power supply at 3A without needing a heatsink.

The FB (feedback) pin allows the regulator to monitor the output voltage and adjust
the width of the pulses to keep the voltage constant. The EN (enable) pin can be used
to turn the IC on and off.

Discussion
Linear regulators as described in Recipe 7.4, Recipe 7.5, and Recipe 7.6 suffer from
the disadvantage that they simply burn off the excess voltage as heat, which means
they get hot and also waste energy.

92 | Chapter 7: Power Supplies

Switching regulator designs such as the buck regulator shown in Figure 7-11 operate
at 85% efficiency almost independently of the input voltage. By comparison, a linear
regulator with a high input voltage and a low output voltage may only have an effi‐
ciency of perhaps 20 to 60%.

In a similar manner to PWM (see Recipe 10.8) a buck converter uses a transistor to
switch power to an inductor that stores the energy of each pulse at a high frequency
(150kHz for the LM2596). The longer the pulse the higher the output voltage. A feed-
back mechanism changes the pulse length in response to the output voltage, ensuring
a constant output.

It makes little sense to design a switching power supply from discrete components
when there are ICs like the LM2596 that will do the whole thing so well.

There are many switching voltage-regulator ICs available and generally their data‐
sheet will include a well-designed application circuit and sometimes even a circuit
board layout.

If you are making a one-off project, then it is worth considering buying a ready-made
switching-regulator module, either from eBay or suppliers like Adadruit and Spark‐
fun that specialize in modules.

See Also
You can find the datasheet for the LM2596 here: http://bit.ly/2lOLtHc.

7.9 Convert a Lower DC Voltage to a Higher DC Voltage
Problem
You have a low-voltage supply (say a single 1.5V cell) and want to boost the voltage to
a higher voltage (say 5V).

Solution
Use a boost-converter IC as the basis for a design like the one shown in Figure 7-12.

This design will produce an output voltage of 5V from an input voltage of between
0.9V and 5V at 90% efficiency.

The SW (switch) output of the IC is used to send pulses of current through the induc‐
tor L1 generating high-voltage spikes that charge C1. The output VOUT is monitored
through the FB (feedback) pin via the voltage divider formed by R1 and R2 that sets
the output voltage.

7.9 Convert a Lower DC Voltage to a Higher DC Voltage | 93

http://bit.ly/2lOLtHc

Figure 7-12. Using a TPS61070 Boost Converter

Discussion
The potential divider formed by R1 and R2 sets the output voltage. The value of R2
should be fixed at 180kΩ and the value of R1 calculated using the formula:

R1 = 180kΩ ×
Vout
0 . 5V − 1 = 180kΩ × 5V

0 . 5V − 1 = 1 . 62MΩ ≈ 1 . 8MΩ

There are many similar boost-converter ICs available. In all cases, read the datasheet
carefully as it will include a reference design and guides for finding the correct values
for external components.

See Also
The datasheet for the TPS61070 can be found here: http://www.ti.com/lit/ds/symlink/
tps61070.pdf.

7.10 Convert DC to AC
Problem
You want to convert low-voltage DC into high-voltage AC.

Solution
Use an inverter. These devices use an oscillator to drive a transformer and generate
high-voltage AC from low-voltage DC.

94 | Chapter 7: Power Supplies

http://www.ti.com/lit/ds/symlink/tps61070.pdf
http://www.ti.com/lit/ds/symlink/tps61070.pdf

High-Voltage AC

An inverter generates high-voltage AC, high enough voltage and
current to stop your heart. So, do not attempt to make an inverter
unless you are absolutely certain you have the knowledge and skills
to do so safely.
Generating 110V from a low-voltage source (say a 12V car battery)
is in theory very simple, but unless you really want to make such a
thing yourself, it is generally cheaper and safer to buy a ready-made
inverter product.
For more information on working with high voltages, see Recipe
21.12.

Discussion
If you really do wish to make yourself an inverter, Figure 7-13 shows a typical sche‐
matic.

Figure 7-13. An Inverter Schematic

This design uses the CD4047 timer IC as an oscillator. This IC provides a similar
function to the much more famous 555 timer (see Recipe 7.13, Recipe 7.14, and sev‐
eral recipes in Chapter 16) but has the advantage that it has both normal and inverted
outputs. These two ouputs each drive an NPN Darlington power transistor to ener‐
gize one half of the primary coil in turn.

The transformer used here is the kind used in recipes such as Recipe 7.1 to step down
an AC voltage, but in this case, it will be used to step the voltage up. The windings

7.10 Convert DC to AC | 95

that would normally be used as the secondary side of the transformer will be driven
by the transistors and the output from the transformer will be taken from the coil
that would normally have been connected to AC.

To drive the circuit from 12V DC at 60Hz to produce a 110V AC output you need a
transformer with a 12-0-12V secondary and a 110V primary.

The power to the CD4047 is supplied through a 100Ω resistor (R5) and a 100µF
decoupling capacitor (C3; see Recipe 15.1) across the IC’s power supply. These reduce
noise on the power supply to the CD4047.

Figure 7-14 shows the inverter built on a breadboard. This arrangement is fine as a
first prototype, but in practice the design would be better built onto a circuit board
and the power transistors attached to sizeable heatsinks (Recipe 20.7). It would also
be wise to include a fuse in the 12V supply line to limit the current to a value that the
transistors can handle, otherwise the transistors could overheat and die.

Figure 7-14. An Invertor Circuit Built on Breadboard

The transformer used is a toroidal type that I had available, but any type of trans‐
former can be used.

See Also
For information on using a 4047 IC see its datasheet.

To learn about fuses, see Recipe 7.16.

96 | Chapter 7: Power Supplies

http://bit.ly/2mHK0Xk

To build circuits using a solderless breadboard, see Recipe 20.1.

See Recipe 3.9 for more information on transformers.

7.11 Power a Project from 110 or 220V AC
Problem
You want to power your project from 110V or 220V AC supply efficiently, without
using a large transformer like the one used in Recipe 7.2.

Solution
Designing SMPSs intended for high-voltage use is a specialized and potentially dan‐
gerous activity. Aside from the always present danger of electric shock, a poorly
designed SMPS can easily overheat and become a fire hazard.

For these reasons, I strongly suggest that when you need to power a project from AC,
use a ready-made commercial SMPS “wall wart” power adapter and fit a DC barrel
jack socket to your project. These sealed adapters are readily available and made in
such quantities that they will almost certainly be cheaper to buy than to make.

Discussion
It is interesting to see how these power supplies work. Figure 7-15 shows how such a
power supply can achieve the same power output of a transformer-based design
(Recipe 7.2) with perhaps ⅒th of the weight.

Figure 7-15. An SMPS

The high-voltage AC input is rectified and smoothed to produce high-voltage DC in
the same way as Recipe 7.2 but without using a transformer first. This DC is then
“chopped” or switched at high frequency (often around 60kHz) into a series of short
pulses that then feed an output transformer that steps down the high-frequency AC.
The resulting low-voltage AC is then rectified and filtered into low-voltage DC.
Because the transformer operates at such a high frequency, it can be made much
smaller and lighter than a 60Hz transformer.

7.11 Power a Project from 110 or 220V AC | 97

Voltage regulation is achieved by feedback from the DC output to the controller that
alters the width of the pulses being chopped that in turn alters the DC output voltage.

To keep the DC output isolated from the high-voltage AC, the feedback path to the
controller uses an opto-isolator (Recipe 5.8).

This might seem like a lot of extra complexity, but the size, weight, and cost advan‐
tages of reducing the transformer size is enough to make SMPSs worthwhile.

Although there are ICs that do a lot of the work of an SMPS, they still require quite a
few external components such as an opto-isolator and a high-frequency transformer.

Another advantage of SMPSs over transformer-based power supplies is that they can
generally accept input voltages from 80–240V, and if the input voltage is higher, you
just end up with shorter pulses to generate the same output voltage.

See Also
For the old-fashioned transformer-based approach to AC to low-voltage DC conver‐
sion, see Recipe 7.2.

For more information on transformers see Recipe 3.9 and for opto-isolators see
Recipe 5.8.

7.12 Multiply Your Voltage
Problem
You have an AC voltage that you want to step up to a higher DC voltage.

Solution
This is a job for the very elegant voltage-multiplier circuit, which uses a ladder of
diodes and capacitors to increase the voltage without the use of inductors. It can be
built in multiple stages to increase the voltage by different multiples. The schematic
of Figure 7-16 shows a four-stage voltage multiplier that will multiply the AC voltage
by 4.

Discussion
To understand how this circuit works, consider what happens at the peak positive and
negative value of the AC inputs. When the input is at its negative maximum, C1 will
be charged through D1. On the next positive maximum, C1 will still be charged to the
peak, but now, the input will be effectively added to C1. If we stopped there this
would be a voltage doubler, but now C2 will charge from the next negative peak and
so on until the output is at four times the peak input voltage.

98 | Chapter 7: Power Supplies

Figure 7-16. A Four-Stage Voltage Multiplier

The diodes should all be specified with a maximum voltage greater than the RMS AC
input voltage times 1.4 (peak voltage). When selecting the capacitors (which should
all be of the same value), you have a similar problem to that of selecting a smoothing
capacitor in Recipe 7.2. If there is no load on the output then you can use very low
value capacitors, but as soon as you add a load, they will discharge through it creating
a ripple. Given that you will want the capacitors to be nonpolarized (no electrolytics
here) and high-voltage, then you are likely to use something like 10nF capacitors
rated for the same maximum voltage as the diodes for a low-current load such as a
Geiger–Müller tube.

This kind of circuit is often used in high-voltage applications to multiply an initially
high voltage up to even higher voltages.

See Also
For an example of using this kind of voltage multiplier in a power supply for a Gei‐
ger–Müller tube, see Recipe 7.14.

For background information on diodes and capacitors, see Recipe 4.1 and Recipe 3.1,
respectively, and for background on AC see Recipe 1.7.

7.13 Supply High Voltage at 450V
Problem
You need a 450V DC low-current voltage source from a battery to supply power to a
Geiger–Müller tube in a radiation meter.

7.13 Supply High Voltage at 450V | 99

Solution

Warning: High Voltage

This circuit can generate voltages approaching 1000V. Although
this is at low current, it will still give you a nasty jolt and could have
disastrous consequences if you have a pacemaker or heart prob‐
lems, so please be careful if you decide to make this recipe.
This is especially true if you reuse the transformer from the flash
unit of a disposable camera, as these units have a large capacitor
charged to 400V or more that can really hurt. So discharge the
capacitor first (Recipe 21.7).

Use a version of the inverter circuit of Recipe 7.10 to drive a small high-frequency
transformer. Figure 7-17 shows the schematic for the power supply. Note that D1 and
C4 should both be rated at 1000V.

Figure 7-17. Schematic for High-Voltage DC Supply

The 555 timer is designed to provide a frequency of between 7kHz and 48kHz con‐
trolled using the variable resistor R3. The Darlington transistor provides pulsed cur‐
rent to the transformer, the output of which is rectified and smoothed.

Altering the frequency will alter the output voltage. With a high-voltage multimeter
(1000V DC) adjust the variable resistor until the maximum voltage is found. For my
transformer this took place at a frequency of 35kHz.

100 | Chapter 7: Power Supplies

Discussion
Figure 7-18 shows the project built on two pieces of breadboard. The left breadboard
has the 555 oscillator and the righthand board the transistor and high-voltage part of
the design.

Figure 7-18. High-Voltage DC Supply on Breadboard

As you can see, the high-frequency transformer is tiny. The device I used is marked
DT5A and is scavenged from the flash unit of an old disposable camera.

To check the output voltage, you will need a voltmeter with a 1000V DC range.
Modern digital multimeters generally have an input impedance of around 10MΩ. At
1000V that means that a load current of 1kV / 10MΩ = 100nA. This does not sound
like much, but for a low-current circuit like Figure 7-17, this loading may well reduce
the voltage being measured. Increasing the value of C4, perhaps by putting a couple
of capacitors of the same value in parallel with the original C4, should tell you if the
multimeter is having an effect.

To measure high voltages reliably, you can use a specialist high-voltage meter with a
very high input impedance, but these are expensive.

7.13 Supply High Voltage at 450V | 101

See Also
See Recipe 7.14 for a version of this design that adds a three-stage voltage multiplier
to increase the output voltage.

For information on using the 555 timer, see Recipe 16.6.

For information on measuring high voltages, see Recipe 21.8.

To build circuits using a solderless breadboard, see Recipe 20.1.

7.14 Even Higher Voltage Supply (> 1kV)
Problem
The 450V output of Recipe 7.13 is not enough—you need 1.2–1.6kV for a Geiger–
Müller tube that detects alpha radiation.

Solution
Add a three-stage voltage multiplier to the schematic of Recipe 7.13. The result of this
is shown in Figure 7-19.

Figure 7-19. Adding a Voltage Trippler to the High-Voltage Supply

The diodes, C4, C5, and C6, can all still be rated at 1kV since the voltage across each
should still be under 1kV.

102 | Chapter 7: Power Supplies

Discussion
As with the design of Recipe 7.13 the output of this design is likely to contain a few
volts of unwanted noise.

See Also
For a version of this design without the voltage multiplier, see Recipe 7.13.

7.15 Very Very High Voltage Supply (Solid-State Tesla
Coil)
Problem
You want to make a Tesla coil.

Solution
One common and safe design for a Tesla coil uses a homemade transformer.
Figure 7-20 shows the completed Tesla coil illuminating an LED from a distance of
half an inch and Figure 7-21 shows the power supply built on the breadboard.

Figure 7-20. A Tesla Coil Lighting an LED

7.15 Very Very High Voltage Supply (Solid-State Tesla Coil) | 103

Figure 7-21. A Tesla Coil on Breadboard

Figure 7-22 shows the schematic for the project that uses a self-oscillating design
based around a transformer and transistor.

Figure 7-22. A Tesla Coil Schematic

The transformer for this design is made from a length of 2-inch plastic pipe onto
which around 300 turns of 34 SWG (30 AWG) enameled copper wire are wound next
to each other. The primary is made up of just three turns of plastic insulated multi‐
core wire.

This circuit is called a solid-state flyback converter (sometimes called a slayer exciter).
The top end of the transformer secondary is not directly connected to anything, but
with the top end of the coil connected to something with a large area (such as the
copper ball I used) there is a small stray capacitance to ground. The top surface of the
large area could be a metal plate or various other arrangements, as long as it’s made
from a large conducting area without too many sharp points to encourage discharge.

104 | Chapter 7: Power Supplies

When power is first applied to the circuit, the transistor will turn on through R1,
resulting in a large current flowing through the three turns of the transformer pri‐
mary. This induces current to flow through the secondary, creating a potential differ‐
ence due to the stray capacitance. Although small, this capacitance is sufficient to
reduce the voltage on the bottom end of the secondary (and base of the transistor) to
such an extent that the transistor turns off. The LED ensures that the base never falls
more than 1.8V (the forward voltage of the LED) below ground. Because the transis‐
tor turns off, the magnetic field collapses and R1 reasserts its influence over the tran‐
sistor’s base to turn the transistor back on and so the cycle continues.

If you get the connections of the primary the wrong way around, or even just the
geometry of the secondary wrong, there is a chance the transformer will turn on but
oscillation fail to start, which will rapidly destroy the transistor. If all is well, LED1
will light. A lab power supply with current limiting is very useful in this situation (see
Recipe 21.1).

Discussion
Holding a second LED close to the high-voltage end of the secondary will cause it to
light. By holding one lead of the LED, you will be providing a weak path to ground.

A quick way to increase the power of the circuit is to place several transistors in par‐
allel (all three pins). By using four 2N3904s I was able to generate enough voltage to
cause the gas in a compact florescent lamp to ionize, lighting the lamp from a range of
almost a foot.

See Also
For information on prototyping with a solderless breadboard, see Recipe 20.1.

You can see this Tesla coil in action at https://youtu.be/-DEpQH7KMj4.

For other types of high-voltage power supply, see Recipe 7.13 and Recipe 7.14. The
“joule thief ” circuit (Recipe 8.7) operates in a similar way to this design.

To see a miniature Tesla coil design in action using a ferrite core rather than an open
tube, visit https://www.youtube.com/watch?v=iMoDAspGPPc. The design here uses the
same schematic as in Figure 7-22.

If you search the internet for Tesla coil, you will find some incredible builds.

7.15 Very Very High Voltage Supply (Solid-State Tesla Coil) | 105

https://youtu.be/-DEpQH7KMj4
https://www.youtube.com/watch?v=iMoDAspGPPc

7.16 Blow a Fuse
Problem
You want to protect a circuit from too much current flowing, since too much current
could destroy expensive components or cause a fire.

Solution
Use a fuse. Figure 7-23 shows a selection of fuses.

Figure 7-23. From Left to Right: SMD Polyfuse, Polyfuse, Thermal Fuse, 20mm Fuse,
and 25mm Fuse

Fuses can be broadly classified as one-shot traditional fuses or polyfuses. As the name
suggests, one-shot fuses can only be used once. When their current or temperature
limits have been exceeded and they have blown, that’s it, they must be discarded. For
this reason they are generally attached to electronics using a fuse holder, so they can
be replaced easily.

Polyfuses (a.k.a. resettable fuses) do not blow, but when the current through them
increases above their limit value, their resistance increases, only resetting when the
current returns to zero and they have cooled down. This means they can be perma‐

106 | Chapter 7: Power Supplies

nently attached to a circuit. You will often find them used in places like USB ports,
where you need to protect computer ports against overcurrent by misbehaving
peripherals. Polyfuses use the same technology as PTC thermistors (see Recipe 2.9).

Discussion
In modern circuit design, and especially for low-voltage and relatively low-current
use, polyfuses are the best approach. However, for AC applications and other high-
current situations, where overcurrent will only happen if something is seriously
wrong, then traditional single-use fuses are the safest option because they require
manual intervention before the power can be reapplied to the downstream circuit.

If a single-use fuse blows, then work out why it blew before replacing it. The most
likely cause of overcurrent is a short circuit, either from wires touching that should
not be touching, or a component failing that causes some part of the circuit to draw
more current than it should.

There are a number of different single-use fuses:

• Slow-blow—survives short periods of overcurrent. For example, for use with a
motor that draws a lot of current when starting.

• Fast-blow—blows as soon as the current is exceeded.
• Thermal—designed to blow on overcurrent, but also if the fuse gets hot because

of external influences such as fire.

See Also
To test a fuse, see Recipe 21.5.

For a circuit to produce a constant current, see Recipe 7.7.

To protect a circuit against accidental polarity reversal, see Recipe 7.17.

7.17 Protect from Polarity Errors
Problem
You are building a project that you want to be idiot-proof so that if an idiot puts the
batteries in the wrong way, the project won’t be harmed.

Solution
Many ICs and circuits designed with discrete transistors will be destroyed by overcur‐
rent and hence heating if the power is applied with the wrong polarity.

7.17 Protect from Polarity Errors | 107

If you don’t care about a small voltage drop of 0.5V to 1V, then use a single diode
from the positive battery terminal to the positive supply of your circuit (see
Figure 7-24).

Figure 7-24. Protecting Against Reverse Polarity with a Diode

Remember to select a diode that can handle the current that you expect the circuit to
draw.

If you can’t afford to lose a volt through the diode but are losing 0.2–0.3V, then use a
Schottky diode in place of the regular diode.

If even 0.3V is too much to lose, then use an P-channel MOSFET as shown in the
circuit in Figure 7-25.

Figure 7-25. Reverse Polarity Protection Using a MOSFET

With the correct polarity, the P-channel MOSFET’s gate-drain voltage will be high
enough to keep the MOSFET on. Since MOSFETs with extremely low on-resistances
are available, there will be very little voltage drop across the MOSFET to the load.
The circuit only works for battery-supply voltages over the gate-threshold voltage, or
the MOSFET will not turn on.

When the polarity is reversed, the MOSFET will be firmly off, preventing any signifi‐
cant current from flowing into the load circuit.

Remember that the link between the gate and other connections of the MOSFET is
capacitative and so no current can leak through the gate to the negative terminal of
the battery.

Although almost by tradition people tend to prefer to switch and use polarity protec‐
tion on the positive supply, you can also do the same trick with an N-channel MOS‐
FET on the negative battery supply as shown in Figure 7-26.

108 | Chapter 7: Power Supplies

Figure 7-26. Negative Side Polarity Protection

Discussion
It’s a good idea to include polarity protection in any battery-powered project, even
with a 9V battery that has a clip that only goes one way around, because it is all too
easy to touch the wrong contacts together.

Using a MOSFET is probably the cheapest way to protect a design, as it can cope with
several amps and will generally be smaller and cheaper than a diode with the same
properties, especially in surface-mount technology.

See Also
To use fuses to protect a circuit against overcurrent, see Recipe 7.16.

For background on diodes, see Chapter 4.

For more information on MOSFETs, see Recipe 5.3.

7.17 Protect from Polarity Errors | 109

CHAPTER 8

Batteries

8.0 Introduction
In Chapter 7 you learned about various ways of supplying low-voltage DC to your
electronics designs from AC. In this chapter you will learn how to use various types
of batteries and photovoltaic solar cells.

8.1 Estimating Battery Life
Problem
You want to know how long your battery is going to last.

Solution
The capacity of a battery is specified in Ah (ampere hours) or mAh (milliampere
hours). To calculate how many hours your battery will last, you need to divide this
number by the current consumption of your project in A or mA.

For example, a 9V PP3 rechargeable battery typically has a capacity of about 200mAh.
If you were to connect an LED with a suitable series resistor that limited the current
to 20mA, the battery should be good for about:

200mAh
20mA = 10A hours

111

Discussion
The estimate of time you get using the preceding calculation is very much an estimate
and all sorts of factors such as the age of the battery, the temperature, and the current
will affect the actual battery life.

If you are using a number of batteries in serial (e.g., in a battery holder that contains
4xAA batteries), then you do not get to multiply the battery life by 4, because the
same current will be flowing out of each battery (Figure 8-1).

Figure 8-1. Batteries in Series

From Kirchhoff ’s Current Law (Recipe 1.4) we know the current flowing past any
point in the circuit will be the same. Assuming an LED with a forward voltage of 1.8V
the current will be around 9mA. Even though there is more than one battery cell,
each cell will have 9mA flowing through it. A typical AA battery has a capacity of
around 2000mAh and so we could expect this circuit to run for:

2000mAh
9mA = 222hours

It is best to avoid putting batteries in parallel because none of the cells in the battery
will be at exactly the same voltage and when you connect them together, the first
thing that will happen is their voltages will equalize with the higher voltage batter‐
ies discharging into the lower voltage batteries. If the batteries are rechargeable,
you may be okay if the voltage difference is very small, but for nonrechargeable bat‐
teries, this charging process can heat the batteries and be dangerous.

Batteries all have an internal resistance, very similar to the ESR of a capacitor (Recipe
3.2). This will cause heating as the battery discharges, which is why you cannot use a
small 200mAh battery to supply 10A for 72 seconds. The internal resistance of the

112 | Chapter 8: Batteries

battery will both limit the current and cause the battery to heat up. Small batteries
tend to have higher internal resistance than big batteries.

Most nonrechargeable batteries bought from a component supplier will specify the
maximum continuous discharge current.

See Also
For information on choosing between different types of rechargeable batteries see
Recipe 8.3 and for nonrechargeable batteries see Recipe 8.2.

To measure the current used by your project using a multimeter, see Recipe 21.4.

8.2 Selecting a Nonrechargeable Battery
Problem
You need a nonrechargeable battery for your project, but you are not sure what type
to use.

Solution
Decide what your minimum battery life for the product should be and calculate the
capacity of the battery you need in mAh, then use Table 8-1 to select a battery.

If you need more volts than a single battery cell provides, then place several of the
cells in series in a battery holder.

Table 8-1. Nonrechargeable Battery Capacities and Voltages

Battery Type Approx. Capacity (mAh) Voltage (V)

Lithium Button Cell (e.g., CR2032) 200 3

Alkaline PP3 Battery 500 9

Lithium PP3 1,200 9

AAA Alkaline 800 1.5

AA Alkaline 2,000 1.5

C Alkaline 6,000 1.5

D Alkaline 15,000 1.5

Discussion
Higher capacity nonrechargeable batteries are expensive and so C and D cells are
found less and less often in favor of rechargeable LiPo battery packs (see Recipe 8.3).

8.2 Selecting a Nonrechargeable Battery | 113

You should also be wary of using exotic or unusual batteries. It’s generally a good idea
to stick to universally available batteries like AA cells unless you need something
smaller in which case AAA batteries will do.

Battery holders such as the 4 x AA battery holder shown in Figure 8-2 are readily
available to hold 1, 2, 3, 4, 6, and 8 AA cells to make a battery pack capable of supply‐
ing 1.5, 3, 4.5, 6, 9, and 12V, respectively.

Figure 8-2. A 4 x AA Battery Pack

Perfect batteries would allow you to draw as large a current as you want. However, in
reality batteries have a small resistance that will cause heating as the battery dis‐
charges. The higher the current the greater the heat produced. Smaller capacity bat‐
teries have a lower maximum discharge rate than larger batteries.

See Also
For information on rechargeable batteries, see Recipe 8.2.

114 | Chapter 8: Batteries

8.3 Selecting a Rechargeable Battery
Problem
You want to select a rechargeable battery for your project, but are not sure what type
to use.

Solution
Decide how long you would like your project to operate between charges and use
Table 8-2 to choose a battery.

Table 8-2. Rechargeable Battery Capacities and Voltages

Battery Type Approx. Capacity (mAh) Voltage (V)

NiMh button cell pack 80 2.4-3.6

NiMh AAA cell 750 1.25

NiMh AA cell 2,000 1.25

LC18650 LiPo cell 2,000 to 8,000 3.7

LiPo Flat cell 50 to 8,000 3.7

Sealed lead acid (SLA) 600, 8,000 6 or 12

Discussion
LiPo (lithium polymer) and the closely related lithium ion cells are the lightest and
also now as cheap per mAh as older technologies such as MiMh, but they require care
when charging and discharging or they can catch fire (see Recipe 8.6).

You will still find NiMh batteries in products like electric toothbrushes. They are
heavier than LiPos of the same capacity but are easy to charge (see Recipe 8.4).

SLA batteries (sealed lead acid) are even heavier than NiMh cells but cope well with
trickle charging and last for years. However, their use is on the decline in favor of
lighter-weight LiPo batteries.

Many rechargeable batteries will specify safe charge and discharge rates in units of C.
This refers to a ration of the battery’s nominal capacity. So, a 1Ah battery that says it
can be discharged at 5C is capable of supplying 5A (5 x 1A). If the maximum charge
current is specified as 2C the battery can be charged at 2A.

See Also
For a similar recipe but for nonrechargeable batteries, see Recipe 8.2.

8.3 Selecting a Rechargeable Battery | 115

8.4 Trickle Charging
Problem
You want to charge a NiMh or SLA battery while it’s connected to your circuit and
you don’t need to charge it quickly.

Don’t Trickle Charge LiPo Batteries Like This

Note that LiPo batteries should not be trickle charged in this way.
Instead, see Recipe 8.6 on charging LiPo batteries.

Solution
Trickle charge the battery from a power supply using a resistor to limit the current. If
you don’t know how the power supply works, then also include a diode in the circuit
to prevent damage to the power supply when the power is turned off. Figure 8-3
shows the schematic for charging a 6V battery from a 12V supply.

Figure 8-3. Trickle Charging

Discussion
A battery’s datasheet will specify the charging current to use for fast charging and in
this case slow trickle charging in terms of C, where in this case, C is not capacitance
but rather the capacity of the battery in mAh. So the datasheet for an AA rechargea‐
ble battery might say that it should be trickle charged at C/10 mA, meaning that if the
battery is a 2000mAh AA cell, it can be trickle charged at 2000/10 = 200mA indefi‐
nitely without damaging the battery. Charging below 200mA will still result in the
battery being charged, and in situations like battery backup (Recipe 8.5) charging at
C/50 (40mA) is probably a good compromise between charging speed and power
consumption of the circuit.

116 | Chapter 8: Batteries

To charge at 40mA we just need to set the value of R. The voltage across R will be 12V
– 6V – 0.5V = 5.5V. We know that the current is 40mA, so we can calculate R using
Ohm’s Law as:

R = V
I = 5 . 5V

40mA = 137 . 5Ω ≈ 120Ω

Using the standard resistor value of 120Ω will result in a slightly higher current of:

I = V
R = 5 . 5V

120Ω ≈ 46mA

We also need to make sure the resistor has a sufficient power rating, which we can
calculate as:

P = IV = 46mA × 5 . 5V = 253mW

So, a ¼W resistor is probably OK, but ½W would not get as hot.

An alternative to using a resistor to limit the current is to use Recipe 7.7 to provide a
constant charging current. This design is more complex and expensive, but will cope
better with variations in the input voltage and the battery’s voltage changing as it
charges.

See Also
Charging from a photovoltaic solar cell is very similar to trickle charging (see Recipe
9.1).

8.5 Automatic Battery Backup
Problem
You have a project that is powered through an AC power adapter but you want it to
automatically change over to a battery if the AC power fails.

Solution
Use a battery of slightly lower voltage than the power adapter–supplied voltage and a
pair of diodes in the arrangement shown in Figure 8-4.

The diodes ensure that the output is supplied from either the battery or the power
supply, whichever has the higher voltage. Since you want the power supply to be pro‐
viding the voltage most of the time, arrange for it to be a volt or more higher than the

8.5 Automatic Battery Backup | 117

battery voltage (remember the battery voltage will drop as it discharges).
In Figure 8-4, when the power supply is producing 10V, D1 will be forward-biased
(conducting) and D2 reverse-biased. This reverse-biasing of D2 prevents any acci‐
dental charging of the battery (which may not be rechargeable). If the power supply
were to turn off, D2 becomes forward-biased, providing the output voltage and D1
would become reverse-biased preventing any possible flow of current into the power
supply that could damage it, especially if it is an SMPS design (Recipe 7.8).

Figure 8-4. Automatic Battery Backup

Discussion
When selecting a diode type for D1 and D2, you need to make sure it can handle the
current that the output needs to provide. Although in most cases regular diodes like
the 1N4xxx series are just fine, they will result in a forward-voltage drop of at least
0.5V. You can reduce this voltage drop by using Schottky diodes (Recipe 4.2).

The circuit of Figure 8-4 will work just fine for rechargeable or nonrechargeable bat‐
teries, but it will not charge the batteries. If using rechargeable batteries, you can
modify the circuit slightly so that the power supply trickle charges the battery and
supplies the output. Figure 8-5 shows the schematic for this. See Recipe 8.4 for the
calculation for the charging resistor.

Figure 8-5. Trickle Charge and Battery Backup

Now when the power supply is in charge some of the current from D1 will flow
through R1 and charge the battery (D2 is reverse-biased and can effectively be
ignored). When the power supply is off (0V) D2 becomes forward-biased and sup‐

118 | Chapter 8: Batteries

plies power to the output. At this time, R1 becomes irrelevant as D2 will be conduct‐
ing.

See Also
See Recipe 4.2 for help selecting the right diode.

For the basics of what diodes do, see Recipe 4.1.

8.6 Charging LiPo Batteries
Problem
You want to charge a single LiPo cell.

Solution
Use a LiPo-charging IC designed specifically for the purpose of charging LiPo batter‐
ies. The schematic of Figure 8-6 is an example design using the MCP73831 IC.

Figure 8-6. Charging a LiPo Battery

Many consumer electronics use LiPo batteries (often charged from a USB connec‐
tion) with chips like the MCP73831 and many are low cost (less than $1) and include
all sorts of advanced features that make sure the LiPo cell is charged safely.

The MCP73831 only needs two capacitors and a resistor to make a complete LiPo-
charging circuit. The LED and R2 provide a status indicator that shows that the bat‐
tery is charging and can be omitted if you don’t need it.

The chip will automatically control the charge current, turning it to a safe trickle
charge when the cell is fully charged. However, you can set the maximum charge cur‐
rent in amps (consult the datasheet for the LiPo cell that you plan to use) by means of
R1, using the formula:

Imax = 1, 000
R1

8.6 Charging LiPo Batteries | 119

So, to charge at 500mA (the maximum allowed by the chip anyway) set R1 to 2kΩ.

As an alternative to using a design of your own to charge a LiPo cell, you can also buy
ready-made LiPo charge modules such as the Adafruit 1905 and Sparkfun
PRT-10217 (both use the MCP73831).

Discussion
LiPo batteries have made the news in recent years because they will catch fire if
abused. Using a charger chip like the MCP73831 in your circuits will help ensure
your design is safe and reliable. For extra safety, you can add a thermal fuse (Recipe
7.16) to the supply to the charging circuit.

If you are looking for a lower-tech solution then consider using a NiMh or SLA
battery instead.

Unlike NiMh or SLA batteries, LiPo batteries are not suited for charging in parallel.
Each cell effectively has to be charged independently using special hardware. If your
project cannot operate directly from the 3.7V of a LiPo cell and needs a bit more volt‐
age, then it is generally easier to use a boost converter (Recipe 7.9) to generate the
voltage you need.

See Also
You can find the datasheet for the MCP73831 here: http://bit.ly/2n2XUPP.

8.7 Get Every Drop of Power with the Joule Thief
Problem
You want to squeeze the last drop of energy from a battery.

Solution
The novelty circuit known as a joule thief allows you to power an LED from an alka‐
line AA cell even when its voltage drops to around 0.6V.

A joule thief is actually a small self-oscillating boost converter (see Recipe 7.9) that
requires just a transistor, resistor, and homemade transformer to drive an LED from a
single 1.5V battery, even when the battery voltage drops as low as 0.6V. The circuit is
shown in Figure 8-7.

The circuit is very similar in operation to the self-oscillating boost converter used
in Recipe 7.15 except that the secondary winding has the same number of turns as the
primary and is connected back to the base via a resistor rather than using parasitic
(from the winding) capacitance.

120 | Chapter 8: Batteries

http://bit.ly/2n2XUPP

Figure 8-7. Joule Thief Schematic

Discussion
Figure 8-8 shows a joule thief. This circuit is interesting because it is fun to make one
and see just how long an AA battery can power an LED.

Figure 8-8. A Joule Thief on a Breadboard

8.7 Get Every Drop of Power with the Joule Thief | 121

I made my transformer by winding 12 turns of 30 AWG (34 SWG) enameled copper
wire, for each winding, around a tiny toroidal ferrite core. In reality, more or less of
any ferrite core and even plastic insulated wire will work just fine.

The supply generates pulsed DC at a frequency of about 50kHz (depending on the
transformer).

See Also
For more practical boost converters, see Recipe 7.9.

Recipe 7.15 uses a very similar circuit to this recipe.

For information on wire gauges, see Recipe 2.10.

122 | Chapter 8: Batteries

CHAPTER 9

Solar Power

9.0 Introduction
This chapter is all about generating electricity from the sun using photovoltaic cells.
The related topic of storing and using energy to power your projects or an Arduino
or Raspberry Pi are also covered.

9.1 Power Your Projects with Solar
Problem
You want to understand how to power an electronics project using solar power, so
that you are not dependent on power or the need to regularly replace batteries.

Solution
Use a photovoltaic solar panel (Figure 9-1) to generate electricity to trickle charge a
battery that then supplies your project. The leftmost panel in Figure 9-1 is reclaimed
from a low-power solar LED on a stick that cost about $1.50.

Figure 9-2 shows the schematic for solar charging a battery.

Solar panels are made up of a number of solar cells wired together in series to
increase the output voltage. You will need a solar panel with an output voltage that is
greater than the battery voltage.

The diode D1 is essential to prevent current from flowing back through the solar
panel and damaging it when the solar panel is not illuminated enough for its output
voltage to exceed the battery voltage.

123

R1 sets the charging current in just the same way as trickle charging (Recipe 8.4). As
with trickle charging, you can also use a current regulator such as the one described
in Recipe 7.7.

Figure 9-1. A Selection of Solar Panels—Left to Right Unknown Wattage, 1W, and 20W
Panels

Figure 9-2. Solar Charging a Battery

Discussion
The performance of the solar panel varies enormously with the amount of sunlight
falling on it. A solar panel will produce useful amounts of power when in direct sun‐

124 | Chapter 9: Solar Power

light, but in shadow or on a cloudy day it is unlikely to produce any more than 1/20
of its direct sunlight performance.

If you are thinking of using a solar panel to power a project indoors, unless you plan
to keep the project on a sunny window sill or your project uses microamps, then for‐
get it. The size of panel that you will need will make the project huge.

Two key parameters specified for a solar panel are its nominal output voltage and its
power output. Both these values require some explanation.

The power output of the panel in mW for a small panel and W for a larger panel, as
stated in the specification for the panel, is the power output under ideal conditions.
That is, pointing directly at the sun without clouds, haziness, or any other impair‐
ments. In Table 9-1 you see the results of practical tests on the solar panels shown
in Figure 9-1. These tests were carried out in the early afternoon at my home (53°
latitude). The “no direct sunlight” readings were made with the panel pointing at
clear sky but away from direct sunlight. For details on how to take such measure‐
ments yourself, see Recipe 9.3.

Table 9-1. Solar Panel Output Power

Nominal Power Dimensions
(inches)

Actual Output
(direct sunlight)

Actual Output
(no direct sunlight)

Guide Price (2016)

Unknown 1x1 40mW 1.4mW $1

1W 6x4 210mW 8.4mW $5

20W 22x12 6.9W 86mW $40

Two things emerge from these measurements. First, the actual power output, even for
the highest quality panel (the 20W panel), was actually almost ⅓ of its rated value.
Secondly, when out of direct sunlight, the power output fell to almost 1/100 of the
full-sunlight reading in the worst case. Now, while I’m sure the panels would do bet‐
ter at noon near the equator, that’s not where most of us live.

Similarly, the output voltage at suboptimal lighting levels is also not the same as the
specified output voltage. Table 9-2 shows the no-load output voltage for the same
solar panels.

Table 9-2. Solar Panel Output Voltages

Nominal Output Voltage Actual Output
(direct sunlight)

Actual Output
(no direct sunlight)

2V 2.2V 1.9V

6V 10.6V 9.7V

12V 21.3V 18V

9.1 Power Your Projects with Solar | 125

The output voltage is higher than the nominal voltage so it can be used to charge a
battery of nominal voltage.

See Also
To work out the power output of the solar panel that you need, see Recipe 9.3.

For the basics of trickle charging, see Recipe 8.4.

9.2 Choose a Solar Panel
Problem
You want to be able to decide on the output power of a solar panel to suit your
project.

Solution
This solution will not give you an exact solar-panel power requirement and accompa‐
nying battery capacity, but it will at least give you a rough estimate to get you started
with field testing.

Start by calculating the energy use of your project in Ws (joules) for a 24-hour period
because a 24-hour day will include both the daylight and nighttime parts of the daily
cycle. Calculating this current consumption is easy if the device is on all the time and
the current consumption is constant. Let’s say we have a garden temperature sensor
that uses WiFi and consumes a constant 70mA from its 5V power supply. The power
consumption is therefore 70mA x 5V = 350mW. The energy consumption is 350mW
times the number of seconds in 24 hours. That is, 350mW x 24 x 60 x 60 = 30,240J.

This means that we need a solar panel that can during a 24-hour period provide
30,240J of energy. You can calculate the required solar-panel power using the for‐
mula:

Psolar = E
H × 60 × 60

where E is the energy needed (30,240 in this example) and H is the average number of
hours that the solar panel will be in direct sunlight. Let’s assume that you live in the
tropics, have more or less no seasonal variation in day length, and 10 hours of sun‐
light a day. In that case you can calculate the power of the panel you need as:

Psolar = E
H × 60 × 60 = 30, 240

10 × 60 × 60 = 0 . 84W

126 | Chapter 9: Solar Power

So, in theory a 1W solar panel is fine for this particular situation.

If you think you might need the thermostat to keep working for three days without
any solar charging (perhaps during a tropical storm) you will need a battery that can
deliver 3 x 30,240 = 90,720J of energy.

The storage capacity in mAh (C) can be calculated using this formula:

Cbattery = E
V × 60 × 60 = 90, 720

5 × 3600 = 5Ah

Discussion
This equation has made a number of optimistic assumptions. First, the tropical day‐
light pattern is likely to be markedly different from a wet maritime climate at high
altitude. In that case, you may only be able to assume a much lower average. For
example, according to US Climate Data, December in Seattle only averages 62 hours
of sunshine in the entire month (2 hours a day). This would require a solar panel of
five times the power of the tropical equivalent.

The equation also assumes that any voltage conversion that is needed between the
output of the solar panel down to the battery voltage is 100% efficient. If you are
using a switching regulator like Recipe 7.8 then you might get 80%, but a linear regu‐
lator will not be as good, maybe only 50% or lower.

Also, the battery you are charging or the circuit charging it may limit the maximum
power that you are using from the solar panel to prevent damage to the battery by
charging it with too high a current. This all needs to be taken into account. Using a
higher power solar panel than your battery can keep up with will have the advantage
that under lower light conditions you will still get some charging.

All in all, using the worst-case sunshine hours scenario for your location, you should
probably use double the calculated solar-panel output power requirement as your
starting point, before ordering any solar panels to start experimenting with.

In addition to assumptions about the generation side of things, the load side is also
often a lot more complicated than a constant load current. It may be that a device has
a constant standby current most of the time, but then is turned on by a user or as a
result of a timed operation and uses considerably more current for a while, before
going back to standby mode. In addition to manually logging the current consump‐
tion and making estimates of the energy usage over 24 hours, you can also use a log‐
ging multimeter that will make and store periodic readings of current consumption.
The resulting data can be downloaded into a spreadsheet for further analysis.

9.2 Choose a Solar Panel | 127

http://bit.ly/2mqgu7C

A logging multimeter can also be a great way of assessing the real performance of a
solar panel (see Recipe 9.3).

If you are making a solar-powered project, then it is always worth working out how
to keep the power consumption to a minimum. For an Arduino or other microcon‐
troller project this may mean making the microcontroller go into a low-power sleep
most of the time, just waking periodically to check if anything needs to happen.

Of course, some projects (maybe a solar-powered water pump) don’t need a battery
backup because they only need to operate when it’s sunny.

See Also
For information on measuring the actual power output of a solar panel, see Recipe
9.3.

For examples of this approach for powering an Arduino see Recipe 9.4 and for a
Raspberry Pi see Recipe 9.5.

9.3 Measure the Actual Output Power of a Solar Panel
Problem
Your solar panel has nominal output power, but you want to measure the actual out‐
put in your location.

Solution
Using a load resistor attached to the solar panel, measure the voltage across the resis‐
tor and from this calculate the power output. Figure 9-3 shows this arrangement.

The output power of the solar panel P is calculated as:

P = V2

R

So, if you use a 100Ω load resistance and the voltage is 5V, the output power of the
solar panel is:

P = V2

R = 25
100 = 250mW

128 | Chapter 9: Solar Power

Figure 9-3. Measuring the Voltage Across a Load Resistor

The value of the load resistor needs to be low enough that the maximum output
power of the solar panel is not exceeded, otherwise the solar panel will not generate
as much as it could. In other words, if the solar panel is a 12V panel, you will proba‐
bly find that the no-load output voltage is up to 18V in bright sunlight. So, you really
want a load resistor value that gives an output of about 12V. You can calculate the
maximum value of resistor to use using:

Rload =
Vnominal

2

Pnominal

So, if your solar panel claims to be 20W at 12V, an ideal resistor value would be:

Rload =
Vnominal

2

Pnominal
= 144

20 = 7Ω

Remember that the resistor will have to have a power rating sufficient to handle the
full power output of the panel—in this case 20W.

9.3 Measure the Actual Output Power of a Solar Panel | 129

Discussion
In addition to simply taking readings under different circumstances (full sunlight,
shade, etc.) you can also use a logging multimeter such as the one shown in
Figure 9-4 to record the voltage across the load resistor at regular intervals.

Figure 9-4. A Logging Multimeter with Serial Output Connected to a Computer

This way, you can create a picture of what your panel is likely to generate in a day.

See Also
In Recipe 9.2 this measurement technique was used to assess the performance of
some of my solar panels.

For information on using a voltmeter, see Recipe 21.2.

9.4 Power an Arduino with Solar
Problem
You have an Arduino project that you want to power from a solar panel.

Solution
Use a 5V solar cellphone charger, like the one shown in Figure 9-5.

130 | Chapter 9: Solar Power

Figure 9-5. A Solar Charger/Battery

Discussion
Unless you are designing a product, using a ready-made charger circuit is by far the
easiest way of solar powering your Arduino.

An Arduino Uno uses around 50mA, so a 4Ah charger/battery like the one shown
in Figure 9-5 will power the Arduino for around:

4000
50 = 80hours

The Arduino Uno is not the most efficient of boards, when it comes to trying to min‐
imize current consumption. It is more efficient to use an Arduino Pro Mini that has
an external USB interface that you only need to connect when programming the
Arduino. This can reduce your current consumption to 16mA. Using software to put
the Arduino to sleep periodically can also greatly reduce current consumption.

See Also
For an introduction to Arduino, see Recipe 10.1.

To power your Raspberry Pi from solar, you will need a bigger solar panel than pro‐
vided with ready-made phone boosters, as the Raspberry Pi is considerably more
power hungry (see Recipe 9.5).

9.4 Power an Arduino with Solar | 131

9.5 Power a Raspberry Pi with Solar
Problem
You want to power your Raspberry Pi from solar.

Solution
Use a 12V solar cell, charge controller, and SLA battery with a 12V to 5V power
adapter.

This may sound excessive, but a Raspberry Pi with a WiFi adapter (WiFi is power
hungry) can easily consume 600mA. If you add in a small 12V HDMI monitor, then
you are likely to be drawing well over 1A.

Figure 9-6 shows a typical setup.

Figure 9-6. Solar Powering a Raspberry Pi

A ready-made charge controller generally has three pairs of screw terminals. One is
attached to the solar panel, one to the battery, and one pair for the load, which in this
case is a 12V to USB (5V) adapter commonly used as a phone car charger. Be sure to
use one that can supply at least 1A.

132 | Chapter 9: Solar Power

Discussion
To run the Raspberry Pi continuously, you will need a 20W or greater solar panel.
The choice of battery size depends on how long you want your Pi to keep running
after it goes dark, or is dull for a few days. See Recipe 9.2 for information on how to
make that choice.

If you are planning to use your Raspberry Pi as a controller, you may want to con‐
sider whether it would be better to use an Arduino, which uses only ⅒ of the power,
or if you need network connectivity, a Particle Photon or an ESP8266 mod‐
ule (see Recipe 10.6), both of which use less than 100mA.

See Also
To power an Arduino using solar energy, see Recipe 9.4.

9.5 Power a Raspberry Pi with Solar | 133

CHAPTER 10

Arduino and Raspberry Pi

10.0 Introduction
There is a good chance that any electronics project that you embark on will involve
the use of a microcontroller (in the form of an Arduino) or a single-board computer
(SBC) like the Raspberry Pi. Our gadgets are becoming more intelligent, requiring a
little computer brain to control them; they are also becoming more connected, often
needing an interface to the internet.

A typical Maker’s electronics project these days will involve the use of a microcontrol‐
ler or SBC with some electronics to switch things or sense value, or both. These extra
electronics are attached to the microcontroller or SBC using its GPIO (general-
purpose input/output) pins.

In this chapter the recipes mostly focus on the electronic side of interfacing with a
microcontroller or SBC in general, but will also use the Arduino and Raspberry Pi as
examples.

10.1 Explore Arduino
Problem
You want to understand just what an “Arduino” is and why it finds its way into so
many electronics projects.

Solution
Figure 10-1 shows the most popular flavor of Arduino, the Arduino Uno R3.

135

Figure 10-1. An Arduino Uno

An Arduino is not a microcontroller but instead a microcontroller interface board. It
has a microcontroller chip on the board, but it also has a whole load of other compo‐
nents that provide:

• Regulated power to the microcontroller
• A USB interface to program the Arduino from your computer
• A “power” LED
• A “user” LED connected to one of its pins that can be turned on and off progra‐

matically
• A 16MHz quartz crystal, necessary for the microcontroller’s operation
• GPIO sockets for connecting external electronics

An Arduino does not do anything until it has been programmed. That is, you have to
use your computer to write some instructions in the programming language C that
can control and read the GPIO pins. Special software, called the Arduino IDE, is pro‐
vided to both write the programs and then upload them onto the Arduino using a
USB cable. Figure 10-2 shows the Arduino IDE with the “Blink” program loaded and
ready to transfer to your Arduino. As its name suggests, the Blink program simply

136 | Chapter 10: Arduino and Raspberry Pi

makes the Arduino’s built-in LED blink on and off and is the starting point for most
people’s Arduino adventures.

What Programming Language Does Arduino Use?
Strictly speaking Arduinos are programmed using the C++ language, the “C” pro‐
gramming language with object-oriented extensions added to it. C is actually a subset
of C++, which means that C programs that do not use any of the features of C++ will
also work just fine. This means that most Arduino sketches (as Arduino programs are
called) will look just like they were written in C rather than C++.

Because everyday writing of Arduino sketches does not require you to have any
understanding of object-oriented software practices I prefer to say that Arduinos are
programmed in C rather than C++, so as not to give the impression that you need to
know anything about object-oriented programming to use an Arduino.

Figure 10-2. The Arduino IDE

10.1 Explore Arduino | 137

You can download the Arduino IDE from http://arduino.cc.

In this book, it will be assumed that you have experimented with Arduino and at least
got as far as uploading a program onto it to make an LED blink. If you are new to
programming or need a slower-paced introduction to Arduino, then see some of the
book suggestions at the end of this recipe.

Discussion
In addition to the GPIO pins that you will learn more about in Recipe 10.7 the Ardu‐
ino also has peripheral interfaces for I2C (Recipe 14.9 and Recipe 14.10) and SPI
devices (Recipe 19.4).

The Arduino is an extremely useful and reliable component to use in your designs,
even if it is just while you are prototyping the project and will later build your own
design with a microcontroller.

In addition to the Arduino Uno shown in Figure 10-1, there are many other types of
Arduinos that are all programmed the same way. This means you can select an Ardu‐
ino based on its price, size, and number of GPIO connections.

See Also
There are many excellent books written about Arduino that will help you fill in the
background. Two I particularly recommend are:

• If you are new to programming: Programming Arduino: Getting Started with
Sketches by Simon Monk, TAB DIY, 2016.

• For an encyclopedic Arduino reference: The Arduino Cookbook by Michael Marg‐
olis, O’Reilly, 2011.

The following is a list of some of the Arduino-related recipes in this book, outside of
this chapter:

• Recipe 11.6
• Most of Chapter 12
• Most of Chapter 13
• Most of Chapter 14
• Recipe 18.1
• Recipe 19.3
• Recipe 19.4

138 | Chapter 10: Arduino and Raspberry Pi

http://arduino.cc

10.2 Downloading and Using the Book’s Arduino Sketches
Problem
You don’t want to have to type in all the example code in the book; you want to be
able to download and use it.

Solution
All the Arduino sketches and Python programs for Raspberry Pi for this book are
downloadable from GitHub.

To use the Arduino sketches, download them from GitHub by cloning the directory if
you are a git user, or use the Download Zip option behind the Clone or Download
button on the GitHub page. You do not need to have a GitHub login to download
the files.

Once extracted, the directory contains a directory called arduino with each of the
Arduino sketches inside its own directory. Double-clicking on it will open the sketch
in the Arduino IDE.

Installing the Arduino IDE
The Arduino IDE is available for Windows, OS X, and Linux. Before you can start
programming your Arduino, you will need to download the IDE version for your
computer’s operating system following the instructions at the Arduino website.

Discussion
An alternative way to access the sketches is to copy the contents of the arduino direc‐
tory that you downloaded from GitHub into your Arduino IDE’s sketches directory,
which is found in your operating system’s Documents or My Documents (Windows)
folder in a directory called Arduino. Then you will be able to open any of the sketches
from the File→Sketchbook menu of the Arduino IDE.

See Also
To download the Python files for Raspberry Pi, see Recipe 10.4.

If you are looking for a primer to teach you Arduino C, then my book Programming
Arduino: Getting Started with Sketches (TAB DIY, 2016) should help you out.

10.2 Downloading and Using the Book’s Arduino Sketches | 139

https://github.com/simonmonk/electronics_cookbook
https://www.arduino.cc/en/Main/Software

10.3 Explore Raspberry Pi
Problem
You want to understand just what a “Raspberry Pi” is and why it finds its way into so
many electronics projects.

Solution
A Raspberry Pi (Figure 10-3) is an SBC running a version of Debian Linux (called
Raspbian) as an operating system. You can plug in a keyboard, mouse, and monitor
and use it to browse the internet just like a “normal” computer.

Figure 10-3. From Left to Right: Raspberry Pi Zero Model A and Pi 2 Model B

The Raspberry Pi is available in a number of different sizes, from the very low-cost Pi
Zero up to the Model 3, which includes built-in WiFi.

The reason the Raspberry Pi has become popular for electronics projects is that, like
the Arduino, it also has GPIO pins that you can connect to external electronics.
What’s more, because the Raspberry Pi can be easily connected to the internet, you
can also use it for all sorts of Internet of Things (IoT) projects.

When it comes to programming the Raspberry Pi, there are lots of options. In fact, all
major programming languages are available to run on the Raspberry Pi, but the most
popular language for electronics projects is probably Python, which is used in con‐
junction with the RPi.GPIO library.

While you need a computer to program an Arduino, to write programs for Raspberry
Pi, you will use the Raspberry Pi itself.

140 | Chapter 10: Arduino and Raspberry Pi

Discussion
To use a Raspberry Pi unattended, you will want to be able to make your program
automatically run when the Raspberry Pi Boots up (Recipe 10.3).

See Also
My book The Raspberry Pi Cookbook by O’Reilly (2016) is a cookbook like this, but
dedicated entirely to the Raspberry Pi.

If you are new to programming and need a gentle introduction to Python program‐
ming on the Raspberry Pi, you might want to consider my book Programming the
Raspberry Pi: Getting Started with Python (TAB DIY, 2015).

Here is a list of some of the Raspberry Pi-related recipes in this book outside of this
chapter:

• Recipe 11.7
• Most of Chapter 12
• Most of Chapter 13
• Much of Chapter 14
• Recipe 18.2
• Recipe 19.2

10.4 Downloading and Running This Book’s Python
Programs
Problem
You want to get the Python programs for the Raspberry Pi in this book onto your
Raspberry Pi so that you can run them.

Solution
All the Python programs for Raspberry Pi for this book can be found here: https://
github.com/simonmonk/electronics_cookbook.

To use the programs, you can fetch them from GitHub directly onto your Raspberry
Pi using the command:

$ git clone https://github.com/simonmonk/electronics_cookbook

This will also fetch all the Arduino sketches, but these can be ignored. You will find
the Python programs in a directory called pi.

10.4 Downloading and Running This Book’s Python Programs | 141

https://github.com/simonmonk/electronics_cookbook
https://github.com/simonmonk/electronics_cookbook

To run a program (e.g., blink.py) use the following command:

$ sudo python blink.py

Note that the sudo command is not required on the latest version of the Raspberry
Pi’s operating system (Raspbian) so you may be able to just type:

$ python blink.py

Discussion
Although I suggested ignoring the Arduino sketches earlier in this recipe, in reality
you can download and install the Arduino IDE onto a Raspberry Pi and then use the
Raspberry Pi to program the Arduino (see http://spellfoundry.com/sleepy-pi/setting-
arduino-ide-raspbian/).

See Also
To access the Arduino code, see Recipe 10.2.

To set a Raspberry Pi Python program to automatically run on startup, see Recipe
10.5.

If you are looking for a primer to teach you Python with Raspberry Pi, my book Pro‐
gramming Raspberry Pi: Getting Started with Python (TAB DIY, 2015) should help you
out.

10.5 Run a Program on Your Raspberry Pi on Startup
Problem
You want a program or script to start automatically as your Raspberry Pi boots.

Solution
Modify your rc.local file to run the program you want.

Edit the file /etc/rc.local by using the command:

$ sudo nano /etc/rc.local

Add the following line after the first block of comment lines that begin with #:

/usr/bin/python /home/pi/my_program.py &

It is important to include the & on the end of the command line so that it runs in the
background; otherwise, your Raspberry Pi will not boot.

142 | Chapter 10: Arduino and Raspberry Pi

http://spellfoundry.com/sleepy-pi/setting-arduino-ide-raspbian/
http://spellfoundry.com/sleepy-pi/setting-arduino-ide-raspbian/

Discussion
Be careful when you edit rc.local, or you may stop your Raspberry Pi from booting.

See Also
For general background on Raspberry Pi, see Recipe 10.3.

10.6 Explore Alternatives to Arduino and Raspberry Pi
Problem
Neither an Arduino nor Raspberry Pi are quite what you are looking for and you
want to know what the alternatives are.

Solution
Table 10-1 lists some other popular boards (MC, microcontroller; SBC, single-board
computer).

Table 10-1. Arduino and Raspberry Pi Alternatives

Board Type Notes Arduino IDE
Compatible

Website

Digispark MC A tiny Arduino compatible with just a few GPIO pins that
plugs straight into your computer’s USB port for
programming.

Y digistump.com

Adafruit
Feather

MC A small Arduino compatible with built-in LiPo battery
charger and a range of wireless options.

Y adafruit.com

NodeMCU MC A small, very low-cost board that can be easily converted to
use the Arduino IDE. It has built-in WiFi.

Y eBay

Particle Photon MC A small, low-cost Arduino compatible with built-in WiFi and
IoT software built-in.

N particle.io

Teensy3 MC A small, low-cost Arduino compatible. Y pjrc.com

BeagleBone
Black

SBC A Raspberry Pi alternative with more GPIO pins and analog
inputs.

N/A beagleboard.org

ODROID-XU4 SBC An 8-core 2GHZ South Korean monster SBC. N/A hardkernel.com

Some of these boards are shown in Figure 10-4.

10.6 Explore Alternatives to Arduino and Raspberry Pi | 143

Figure 10-4. From Left to Right: Digispark, Photon, NodeMCU, and BeagleBone Black

Discussion
The Arduino IDE is a very flexible piece of software that can be easily extended to
operate with unofficial Arduino-type boards. This means that you can stick to the
Arduino IDE and the Arduino C programming language to program Arduino-like
boards that may use a different processor or include useful addons such as WiFi,
Bluetooth, or battery-charging hardware.

The Particle Photon deserves special mention, since although it uses a language that
is based on Arduino C, you do not program it with the Arduino IDE, but rather with
a web-based IDE. Deployment is then over the internet, allowing remote updating
of applications. It also includes a very easy-to-use software framework for building
IoT projects.

Other good boards to use where WiFi is required are any of the boards based on the
ESP8266 modules, such as the NodeMCU and smaller modules like the ESP01. These
can be programmed from the Arduino IDE. The ESP8266 boards are not as simple to
use as the Photon but are extremely cheap.

See Also
For information on the Arduino see Recipe 10.1 and for the Raspberry Pi, see Recipe
10.3.

144 | Chapter 10: Arduino and Raspberry Pi

10.7 Switch Things On and Off
Problem
You want to use the Arduino, Raspberry Pi, and other microcontrollers and SBCs to
control external electronic components.

Solution
Microcontrollers and SBCs have GPIO pins that allow you to connect external elec‐
tronics to them. Figure 10-5 shows the schematic for a typical GPIO pin within a
microcontroller chip or SoC of a Raspberry Pi. The pin can function as either a digi‐
tal input or digital output, under software control.

Figure 10-5. Schematic for a GPIO Pin

Referring to Figure 10-5, if the output enable control of the GPIO is set using soft‐
ware to be enabled, the pin functions as a digital output and the push-pull driver
(Recipe 11.8) allows the GPIO pin to source or sink a few tens of milliamps.

10.7 Switch Things On and Off | 145

Sourcing and Sinking
You will learn more about push-pull drivers and high- and low-side switching
in Chapter 11, but for now, you just need to know that a GPIO output can either
arrange for current to flow out of it through a load to ground (“source”) or allow cur‐
rent to flow through a load and then into the GPIO pin (“sink”). Although they may
sound very different, in both cases the load gets powered.

GPIO outputs are nearly always used as current sources.

If the push-pull driver is disabled, then the pin can function as a digital input. If the
pull-up resistor enable control is set, then the transistor Q1 is enabled to allow the
resistor to pull up the input to a default high. This is commonly used when connect‐
ing a switch to a digital input to prevent a floating input from oscillating between
high and low (see Recipe 10.7).

Discussion
The GPIO schematic of Figure 10-5 is typical of most Arduino pins. Some of the
Arduino pins (marked A0 to A5) can be used as analog inputs and for those pins, the
GPIO is also connected to ADC hardware inside the microcontroller chip.

Some GPIO pins have pull-down resistors as well as pull-up resistors, which can be
turned on and off in the same way as pull-down resistors.

Table 10-1 compares the GPIO features of an Arduino and Raspberry Pi 3.

Feature Arduino Uno R3 Raspberry Pi 3

Operating voltage 5V 3.3V

Maximum individual output current 40mA 18mA

Maximum total current for all pins used as outputs 400mA Not specified

Internal pull-up resistors Y Y

Internal pull-down resistors N Y

Number of GPIOs 18 26

Analog inputs 6 None

Figures 10-6 and 10-7 describe each of the accessible GPIO and power pins available
on an Arduino and Raspberry Pi 3, respectively.

146 | Chapter 10: Arduino and Raspberry Pi

Figure 10-6. Arduino Uno R3 Pinout

Some of the pins require a little more explanation:

• IO reference voltage is the output voltage of the Arduino (5V for an Uno) but
some other types of Arduinos operate at 3.3V. Intended for use by plug-in shields
but rarely used.

• Vin is the supply voltage, which might be 9V if an external power supply is con‐
nected to the barrel jack, or 5V if the board is USB powered.

• The two I2Cs (IC to IC buses) are used for connecting to I2C devices (see Recipe
14.9), but are also connected to A4 and A5 of an Arduino Uno. On some other
Arduino boards such as the Leonardo, these are separate.

• Analog reference voltage can be connected to a reference voltage below 5V to
narrow the analog input range for greater precision at low voltages. If no connec‐
tion is made, the analog inputs will be relative to 5V on an Arduino Uno.

• Pins 0 and 1 can in a pinch be used as extra GPIO pins, but if so you will need to
disconnect anything attached to them to allow the USB connection to work. So
generally it’s best not to use them.

10.7 Switch Things On and Off | 147

Figure 10-7. Raspberry Pi GPIO Connector Pinout

Unlike an Arduino, the GPIO pins on a Raspberry Pi are not labeled. If you are going
to be connecting things to the GPIO pins, it’s a good idea to get a hold of a GPIO
template, such as the Raspberry Leaf (Adafruit 2196), that fits over the GPIO pins
allowing you to identify them easily.

Most of the pins on a Raspberry Pi can be used as GPIO, but some have second func‐
tions:

• Pins 2 and 3 can also be used to connect I2C devices.
• GPIO pins 9 to 11 can also be used as an SPI for devices that support that con‐

nection type.
• ID_SD and ID_SC are dedicated to an interface for any HAT (hardware attached

to top) that fits over the GPIO connector and allows software to identify the
HAT.

• Pins 14 and 15 can be used to provide TTL serial interfaces for devices such as
GPS modules that often use that interface standard.

If you have an older Raspberry Pi (before the model B+) it will only have 26 pins on
the GPIO connector. These are the same as the top 26 pins (above the dashed line) of
the 40-pin layout of newer Raspberry Pis shown in Figure 10-7.

See Also
For an introduction to Arduino see Recipe 10.1 and for Raspberry Pi see Recipe 10.3.

Many of the recipes in Chapters 11, 12, 13, and 14 use GPIO pins.

148 | Chapter 10: Arduino and Raspberry Pi

10.8 Control Digital Outputs with Arduino
Problem
You want to configure an Arduino GPIO pin to be an output and then turn the out‐
put on and off using software.

Solution
Use the pinMode function to set the pin to be an output and then use digitalWrite to
turn the pin on and off. The following example program will make digital pin 13
(attached to the Arduino’s built-in LED) blink on and off:

const int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop() {
 digitalWrite(ledPin, HIGH); // turn the LED on
 delay(1000); // wait for a second
 digitalWrite(ledPin, LOW); // turn the LED off
 delay(1000); // wait for a second
}

The code for this sketch is available as part of the book downloads (Recipe 10.2). The
sketch is called blink.

Discussion
The program (or “sketch” as they are known in the Arduino world) starts by defining
a constant for the pin connected to the LED called ledPin, which is given the value
13. If you change your mind and decide to make another pin blink, you only need to
change 13 to that pin number in one place in the code.

The setup function is run just once after the Arduino is reset. The pinMode function
then specifies that ledPin is to be an OUTPUT. It is perfectly possible to change a pin’s
mode while the sketch is running. You can find a good example of this with Charlie‐
plexing (see Recipe 14.6).

The loop function will be run repeatedly over and over again, and each time it is run,
it will first set ledPin (pin 13) high, wait a second (1000 milliseconds) then set it low,
then wait another second, and so on.

10.8 Control Digital Outputs with Arduino | 149

See Also
For digital outputs on a Raspberry Pi, see Recipe 10.9 and for digital inputs on an
Arduino see Recipe 10.10.

For the current-handling capabilities of an Arduino digital output, see Recipe 10.7.

10.9 Control Digital Outputs from Raspberry Pi
Problem
You want to configure a Raspberry Pi GPIO pin to be an output and then turn the
output on and off using software.

Solution
Use the RPi.GPIO library (included in Raspbian) with Python. The following exam‐
ple program will make GPIO pin 18 turn on and off once a second:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

led_pin = 18

GPIO.setup(led_pin, GPIO.OUT)

try:
 while True:
 GPIO.output(led_pin, True) # LED on
 time.sleep(1) # delay 1 second
 GPIO.output(led_pin, False) # LED off
 time.sleep(1) # delay 1 second
finally:
 print("Cleaning up")
 GPIO.cleanup()

The code for this program is available as part of the book downloads (see Recipe
10.4). The file is called blink.py.

Unlike the Arduino, the Raspberry Pi does not have any user-controllable LEDs built
in so to see this program in action see Recipe 14.1.

150 | Chapter 10: Arduino and Raspberry Pi

Discussion
The code starts by importing the GPIO and time libraries. It then sets the GPIO pin
identification mode to be BCM (Broadcom). This is a hangover from the early days of
Raspberry Pi when two ways of identifying the pins were almost equally used. How‐
ever, for historical reasons, you still need to include this line at the top of all your
Python programs. Some internet and book resources still exist that use the pin posi‐
tions on the connector rather than the pins’ name. If you find such a resource, it will
tell you to use a pin mode of BOARD instead of BCM.

The variable led_pin refers to the GPIO pin to be blinked and the pin set to be
an output.

The main program loop is contained inside a try/finally block. This is not strictly
speaking essential and the program will run just fine without it, but by calling
GPIO.cleanup() whenever the program exits, all the GPIO pins are put back into a
safe input state so that accidental shorts of the pins will not cause any damage.

Inside the while loop, the pin is first turned on, then there is a delay of a second, then
it is turned off, etc. The sleep function takes a time in seconds as a parameter that can
also be less than a second using a decimal notation. For example, to delay for half a
second you would use time.sleep(0.5).

See Also
The Arduino equivalent to this program can be found in Recipe 10.8.

For digital inputs on a Raspberry Pi, see Recipe 10.11.

10.10 Connect Arduino to Digital Inputs Like Switches
Problem
You want to read an Arduino digital input in an Arduino sketch.

Solution
Use the Arduino C digitalRead function. To see the result of the read, use the Ardu‐
ino Serial Monitor. The following sketch illustrates this:

const int inputPin = 7;

void setup()
{
 pinMode(inputPin, INPUT);
 Serial.begin(9600);
}

10.10 Connect Arduino to Digital Inputs Like Switches | 151

void loop()
{
 int reading = digitalRead(inputPin);
 Serial.println(reading);
 delay(500);
}

You can find this sketch in the downloads for the book (see Recipe 10.2). It is called
ch_10_digital_input.

The constant inputPin is defined as pin 7 and initialized to be an INPUT in the setup
function.

The loop function first assigns the value resulting from carrying out a digitalRead
on inputPin to the variable reading and then sends this value over the Arduino’s
USB interface to the Serial Monitor. Finally, a delay of 500 milliseconds is added to
slow things down to a manageable rate.

To open the Serial Monitor (Figure 10-8), click the rightmost icon on the Arduino
IDE’s toolbar. This looks like a magnifying glass.

Figure 10-8. The Arduino Serial Monitor

You should see a steady stream of numbers appear as shown in Figure 10-8. These
should be predominantly 0s, but there may be occasional 1s. Try attaching a male-to-
male jumper wire or short length of solid core wire to pin 7 of the Arduino
(Figure 10-9). You should find that you get a selection of 1s and 0s. This is because
you are acting as an antenna and the digital input is picking up electromagnetic noise

152 | Chapter 10: Arduino and Raspberry Pi

(most likely “hum”). The digital input is “floating” and since it has a very high input
impedance, it is very sensitive to noise.

Figure 10-9. A Floating Digital Input

Next, try attaching the floating end of the lead to one of the GND connections on the
Arduino as shown in Figure 10-10. You should see that the output in the Serial Moni‐
tor is all 0s.

Figure 10-10. Connecting a Digital Input to GND

10.10 Connect Arduino to Digital Inputs Like Switches | 153

Finally, move the end of the wire that goes to GND to 5V and the Serial Monitor out‐
put should now be all 1s.

Discussion
The Arduino Serial Monitor is one of the few ways to see what is going on inside your
Arduino and is often used to see what’s going wrong in a sketch.

See Also
For digital inputs on a Raspberry Pi, see Recipe 10.11.

10.11 Connect Raspberry Pi to Digital Inputs Like Switches
Problem
You want to be able to read a GPIO pin as a digital input from your Python program.

Solution
Use the RPi.GPIO library. The following example program reads GPIO23 every half
second and prints out the result:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

input_pin = 23

GPIO.setup(input_pin, GPIO.IN)

try:
 while True:
 reading = GPIO.input(input_pin)
 print(reading)
 time.sleep(0.5)
finally:
 print("Cleaning up")
 GPIO.cleanup()

The code for this program is available as part of the book downloads (see Recipe
10.4). The file is called ch_10_digital_input.py.

154 | Chapter 10: Arduino and Raspberry Pi

Discussion
When you run the preceding program, you will see mostly 0s in the terminal:

$ sudo python ch_10_digital_input.py
0
0
0
0
0
0
0

With both this program and Recipe 10.10 you can connect a switch to the digital
input (Recipe 12.1) or use a female-to-female jumper wire to connect GPIO23 to
either GND or 3.3V.

Do Not Connect to 5V

The maximum voltage for a GPIO pin on the Raspberry Pi is 3.3V.
So on no account should you connect GPIO23 or any other GPIO
pin to one of the 5V pins on the GPIO connector. Doing so is very
likely to damage your Raspberry Pi.

See Also
For digital inputs on the Arduino, see Recipe 10.10.

10.12 Read Analog Inputs on Arduino
Problem
You want to read the voltage at a GPIO pin from your Arduino sketch.

Solution
Use the Arduino analogRead function and one of the Arduino pins A0 to A5 that can
be used as analog inputs. The following example sketch writes the analog reading as a
voltage to the Serial Monitor every half a second:

void setup()
{
 pinMode(inputPin, INPUT);
 Serial.begin(9600);
}

const int inputPin A0;

10.12 Read Analog Inputs on Arduino | 155

void loop()
{
 int reading = analogRead(inputPin);
 float volts = reading / 204.6;
 Serial.println(volts);
 delay(500);
}

You can find this sketch, which is called ch_10_analog_input, with the downloads
(Recipe 10.2).

The sketch defines the inputPin as A0. When referring to one of the A0 to A5 pins
on an Arduino, you have to use the letter and the number (A and 0), whereas for the
other pins you just use the number.

The analogRead function returns a number between 0 and 1023, where 0 means 0V
and 1023 means 5V. This number is converted to a voltage by dividing it by
204.6 (1023 / 5). Note that the analog range can be changed by connecting the Ardu‐
ino AREF (analog reference) pin to a different voltage.

When you open the Serial Monitor you will see a series of values displayed. As with
the digital inputs of Recipe 10.10 the analog input is floating and so the numbers
(voltage on A0) will probably fluctuate something like this:

2.42
2.36
2.27
2.13
1.99
1.86
1.74
1.62
1.40
0.70

Discussion
Try the experiments in Recipe 10.11 and put a wire into A0. Touching the end of the
wire with your fingers so that you act as a radio antenna should make the analog
readings even more wild. Connecting A0 to the 5V connector of the Arduino should
display a voltage reading of 5.00 on the Serial Monitor and GND will give you 0.00;
connecting A0 to the 3.3V socket on the Arduino should give you a reading of
around 3.30.

If the maximum voltage you want to measure is below 5V, then you can use the Ardu‐
ino AREF pin to keep the 0–1023 range of readings but for a smaller voltage range
and thus achieve higher precision.

156 | Chapter 10: Arduino and Raspberry Pi

For example, if you tie the AREF pin to the 3.3V pin on the Arduino you will get a
full range of readings over the 3.3V range. The voltage at AREF needs to be stable and
regulated or your readings will be inaccurate.

Why 0 to 1023?
The number 1023 may seem like a strange choice especially since it is so close to 1000,
but it is used because it is 1 less than 2 to the power of 10 (2 multiplied by itself 10
times) and the analog value is digitized to 10 binary digits (bits).

See Also
The Raspberry Pi does not have analog inputs, but you can use an ADC IC (Recipe
12.4).

10.13 Generate Analog Output on Arduino
Problem
You want your Arduino to control the output power from a GPIO pin, say to control
the brightness of an LED or the speed of a motor.

Solution
Use the analogWrite function of the Arduino on one of the PWM-capable pins.

The following example sketch will set the brightness of an LED wired to pin 11. The
brightness is set by sending a number between 0 and 255 from the Arduino Serial
Monitor to the Arduino board. For the curious, 255 is 1 less than 2 to the power of 8.

const int outputPin = 11;

void setup()
{
 pinMode(outputPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter brightness 0 to 255");
}

void loop()
{
 if (Serial.available())
 {
 int brightness = Serial.parseInt();
 if (brightness >= 0 && brightness <= 255)
 {

10.13 Generate Analog Output on Arduino | 157

 analogWrite(outputPin, brightness);
 Serial.println("Changed.");
 }
 else
 {
 Serial.println("0 to 255");
 }
 }
}

You can find this sketch, which is called ch_10_analog_output, with the downloads
for the book (Recipe 10.2).

In addition to illustrating PWM output from a GPIO pin, this example sketch also
illustrates how you can send data from your computer to the Arduino via the Serial
Monitor.

The setup function sets outputPin to be an OUTPUT and then starts serial communi‐
cation. Finally, the setup function sends a message to the Serial Monitor instructing
you how to use the sketch by sending a number between 0 and 255.

Inside the loop function, the call to Serial.available() tests to see if anything has
been sent from the Serial Monitor, and if it has, it is converted into an int and
assigned to the variable brightness. The analogWrite command is then used to set
the output of outputPin.

To see this sketch in operation, you will first need to follow Recipe 14.1 and attach an
LED to pin 11.

Open the Arduino IDE’s Serial Monitor (see Recipe 10.10) and then try some differ‐
ent values between 0 and 255 to see how the brightness changes (Figure 10-11).

Not Working?

If, when you type a value into the Serial Monitor and click
Send, the LED changes brightness momentarily, but then turns off,
the Line ending drop-down list at the bottom of the Serial Monitor
(see Figure 10-11) is probably not set to “No line ending.”
What is happening is that the number is being sent and works, but
then the line ending arrives as another message and is interpreted
as being 0, turning the LED off again.

158 | Chapter 10: Arduino and Raspberry Pi

Figure 10-11. Setting the PWM Output from the Serial Monitor

Discussion
Not all the pins on an Arduino can be used for PWM like this. In fact, only the pins
on the Arduino Uno marker with a ~ can. On an Arduino Uno, that’s pins 3, 5, 6, 9,
10, and 11. Other Arduino models have different sets of pins that are PWM-capable,
but you will need to refer to the Arduino documentation to know which ones.

Pulse-Width Modulation
In varying the brightness of an LED, it is tempting to think of PWM analog outputs
as being truly analog and varying the output voltage. But this is not actually the case.

Figure 10-12 shows what is really going on.

The output pin is still acting digitally. That is, it’s either logical high (5V on Arduino,
3.3V on Raspberry Pi) or it’s low (0V). The duration of the pulses that emanate from
the pin controls the brightness of an LED attached to a pin. Short pulses make the
brightness low, and long pulses make it brighter on average and appear brighter to
the observer.

10.13 Generate Analog Output on Arduino | 159

http://arduino.cc

Figure 10-12. Pulse-Width Modulation

See Also
For the Raspberry Pi version of this recipe, see Recipe 10.14.

10.14 Generate Analog Output on Raspberry Pi
Problem
You want your Raspberry Pi to control the output power from a GPIO pin, say to
control the brightness of an LED or the speed of a motor.

Solution
Use the PWM feature of the RPi.GPIO library to control the output power of a GPIO
pin. The following Python example program illustrates this:

import RPi.GPIO as GPIO

160 | Chapter 10: Arduino and Raspberry Pi

led_pin = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_pin, GPIO.OUT)

pwm_led = GPIO.PWM(led_pin, 500)
pwm_led.start(100)

try:
 while True:
 duty_s = raw_input("Enter Brightness (0 to 100):")
 duty = int(duty_s)
 pwm_led.ChangeDutyCycle(duty)

finally:
 print("Cleaning up")
 GPIO.cleanup()

You can find this program in the downloads for the book (see Recipe 10.4). If you are
using Python 3 rather than Python 2, change the command raw_input to just input.

To see this program in action, you will need to attach an LED to GPIO pin 18 (see
Recipe 14.1).

The RPi.GPIO library is a little more complex to use than its Arduino counterpart.
After defining the pin as an output, you then have to create a PWM channel using the
line:

pwm_led = GPIO.PWM(led_pin, 500)

The number 500 is the frequency of the PWM pulses in Hz. This PWM channel is
then started using the following line:

pwm_led.start(100)

Here, the value of 100 is the initial duty cycle (percentage of time the pin is high) of
the PWM signal (in this case, 100% of the time).

The rest of the script interacts with the user requesting a value of the duty cycle
between 0 and 100. Run the program and try different versions of brightness as
shown here:

$ sudo python led_brightness.py
Enter Brightness (0 to 100):0
Enter Brightness (0 to 100):20
Enter Brightness (0 to 100):10
Enter Brightness (0 to 100):5
Enter Brightness (0 to 100):1
Enter Brightness (0 to 100):90

When you want to exit the program, press CTRL-C.

10.14 Generate Analog Output on Raspberry Pi | 161

Discussion
The Raspberry Pi does not use a real-time operating system. That is, at any one time,
there are many differnt processes running. So if you are trying to generate pulses of
an exact length such as with PWM, you will find that you get a certain amount of
jitter in the LED brightness as the pulse generation is interrupted.

See Also
For the Arduino counterpart to this recipe, see Recipe 10.13.

10.15 Connect Raspberry Pi to I2C Devices
Problem
You want to enable the I2C bus on your Raspberry Pi to connect I2C peripherals to it
such as the displays used in Recipe 14.9 and Recipe 14.10.

Solution
In the latest versions of Raspbian, enabling I2C (and for that matter SPI—Recipe
10.16) is simply a matter of using the Raspberry Pi configuration tool that you will
find on the main menu under Preferences (Figure 10-13). Just check the box for I2C
and click OK. You will be prompted to restart.

On older versions of Raspbian, the raspi-config tool does the same job.

Figure 10-13. Pi Configuration Before Enabling I2C Using the Pi Configuration Tool

162 | Chapter 10: Arduino and Raspberry Pi

Start raspi-config using the following command:

$ sudo raspi-config

Then select Advanced from the menu and scroll down to I2C (Figure 10-14).

When you are asked “Would you like the ARM I2C interface to be enabled?” say
“Yes.” You will also be asked if you want the I2C module to load at startup, to which
you should also say “Yes.”

Figure 10-14. Enabling I2C Using raspi-config

Discussion
I2C is a commonly used standard for connecting devices together. It uses two data
pins SDA (data) and SCL (clock) to transfer data bidirectionally between devices.
Usually one of the devices on the bus is a microcontroller or in this case, the SoC of
the Raspberry Pi. Multiple devices can be connected to the same I2C bus pins, so, for
example, you could have both a display and a sensor connected to the same two bus
pins, each device having its own unique address.

To use I2C devices from Python, install the Python I2C library by using the com‐
mands:

$ sudo apt-get update
$ sudo apt-get install python-smbus

You will then need to reboot the Raspberry Pi for the changes to take effect.

When using I2C hardware the i2c-tools software can be a great help in debugging
and making sure devices are properly connected to the Raspberry Pi. This can be
installed using the command:

$ sudo apt-get install i2c-tools

10.15 Connect Raspberry Pi to I2C Devices | 163

When you have a device attached to the I2C bus, running the i2cdetect utility will tell
you if it’s connected and what I2C address it’s using, as shown in Figure 10-15.

Figure 10-15. Using i2cdetect

See Also
To set up the Raspberry Pi’s SPI, see Recipe 10.16.

For recipes that connect I2C peripherals to a Raspberry Pi, see Recipe 14.9, Recipe
14.10, and Recipe 19.3.

10.16 Connect Raspberry Pi to SPI Devices
Problem
You want to enable the SPI bus on your Raspberry Pi to connect peripherals to it.

Solution
By default, Raspbian is not configured for the Raspberry Pi’s SPI. To enable it use the
Raspberry Pi configuration tool found in the main menu under Preferences (as in
Recipe 10.15), or on older versions of Raspbian, use raspi-config using the com‐
mand:

$ sudo raspi-config

Then select Advanced, followed by SPI, and then “Yes” before rebooting your Rasp‐
berry Pi. After the reboot, SPI will be available.

164 | Chapter 10: Arduino and Raspberry Pi

Discussion
The SPI allows serial transfer of data between the Raspberry Pi and peripheral devi‐
ces, such as ADCs and port expander chips, among other devices. It is similar in con‐
cept to I2C but uses four pins instead of two. As with I2C SPI data is synchronized
with a clock signal (SCLK) but separate lines are used for each direction of communi‐
cation: MOSI (master out slave in) and MISO (master in slave out) and a separate
“Enable” pin is needed from the master for each of the devices connected to the bus.
It is an older and less elegant standard than I2C but still widely used.

You may come across examples of interfacing with SPI that use an approach called bit
banging, where the RPi.GPIO library is used to interface with the four GPIO pins
used by the SPI.

See Also
Recipe 12.4 uses an SPI ADC converter chip.

The SPI is used in Recipe 12.4 and Recipe 19.4.

10.17 Level Conversion
Problem
You want to connect a 5V device to a Raspberry Pi or one of the 3.3V Arduino mod‐
els.

Solution
When you are connecting a 3.3V-level output to a 5V input, with very few exceptions
(see discussion), no level conversion is needed—you can connect the two directly.

However, if you want to connect a 5V output to a 3.3V input, then that’s a different
matter. Direct connection will wall damage the 3.3V device. If the 3.3V device is
specified as having 5V-tolerant inputs, then you can just connect the two together
directly. Note that the inputs of a Raspberry Pi are not 5V tolerant, so you should
connect them together using a voltage divider as shown in Figure 10-16.

10.17 Level Conversion | 165

Figure 10-16. Reducing a 5V Signal to 3V

Discussion
Occasionally you will find a 5V device that specifies that the logic level for an input
should be above 3.3V. For example, WS2812 LED ICs (Recipe 14.8) theoretically need
an input greater than 4V to be considered as logic high according to their datasheet.
In practice, I have always found them to work without level conversion, but if you are
designing a product to sell, then you would not take that chance and the kind of level
shifter shown in Figure 10-17 should be used.

Figure 10-17. Bidirectional Level Shifting with a MOSFET

This circuit will actually convert levels in both directions; that is, 5V outputs will be
reduced to 3.3V and 3.3V outputs increased to 5V. It makes use of the fact that MOS‐
FETs have a “substrate” protection diode that prevents current from flowing from
drain to source.

To understand how this circuit works, first consider the case where the 3.3V side is an
output and the 5V side an input; that is, the level is being shifted up.

In this case, if the 3.3V GPIO is high, then the gate-source voltage will be 0V, the
MOSFET will be off, and R2 will pull-up the 5V input HIGH. If the 3.3V GPIO out‐
put is low, the gate-source voltage will be 3.3V, the MOSFET will turn on, and the 5V
input will be effectively connected to the LOW signal from the 3.3V side.

166 | Chapter 10: Arduino and Raspberry Pi

If we swap the direction so that the 5V side is now the output and the 3.3V side the
input, then when the 5V output is HIGH the MOSFET source and gate will be at
3.3V, the MOSFET will be off, and the 3.3V input pulled up to 3.3V by R1. If the 5V
output is LOW the MOSFET’s built-in protection diode will conduct, pulling the
3.3V input down to the diode’s forward voltage (about 0.6V). This turns the MOSFET
on, pulling the 3.3V input fully to ground.

See Also
The simplest level conversion using just two resistors is a voltage divider as described
in Recipe 2.6.

For a general background on MOSFETs see Recipe 5.3.

For an interesting discussion of the necessity of level shifting for Raspberry Pi inputs,
see http://tansi.info/rp/interfacing5v.html.

If you have a lot of signals all requiring level shifting, then it makes sense to use a
level-shifting IC or module such as these products from Adafruit: http://bit.ly/
2lLHmuG (four signals) and http://bit.ly/2msMgku (eight signals).

10.17 Level Conversion | 167

http://tansi.info/rp/interfacing5v.html
http://bit.ly/2lLHmuG
http://bit.ly/2lLHmuG
http://bit.ly/2msMgku

CHAPTER 11

Switching

11.0 Introduction
Most modern electronics are concerned with switching things. Microcontrollers and
any other digital logic device use transistors as switches. Taking this a step further,
devices like Arduino and Raspberry Pi can switch external devices, perhaps control‐
ling lighting or power to a heater.

The recipes in this chapter are all concerned with using transistors and other devices
to switch. This includes some recipes to extend the switching power of an Arduino
and Raspberry Pi.

11.1 Switch More Power than Your Pi or Arduino Can
Handle
Problem
You want to allow a pin, such as a microcontroller’s GPIO pin, to control more power
than it otherwise could.

Solution
Use a transistor in a common-emitter arrangement as a “low-side” switch with a resis‐
tor to limit the base current. Figure 11-1 shows the schematic for this circuit, that,
along with Recipe 11.2, you will use time and time again in your designs.

This type of switching is called “low-side” switching because the transistor acts as a
switch between the low voltage of GND and the load.

169

Figure 11-1. Using a Transistor as a Switch

Discussion
The resistor R makes sure that the current drawn from the GPIO pin does not exceed
the current limit of the pin (40mA for Arduino and 16mA for Raspberry Pi; see
also Recipe 10.7). It also protects the transistor from too much base current flowing.
This protective role must be balanced against the limited gain of a bipolar transistor,
which may only be 100 or less. So if you are planning to use the transistor to switch a
current of 1A, you could reasonably expect a base current of 10mA. This means that
for this 1A load, you need to choose a value of R that gives a base current somewhere
between the available current of the GPIO and 10mA.

Aiming for a 10mA base current (if you are using a 5V GPIO pin and assume that the
base-emitter voltage is a fairly constant 0.6V) you can calculate the value of R as:

R = V
I = 5V − 0 . 6V

10mA = 440Ω ≈ 470Ω

Applying the same calculation for a 3.3V GPIO pin you get:

R = V
I = 3 . 3V − 0 . 6V

10mA = 270Ω

The two connections from this circuit to an Arduino or Raspberry Pi are the GND
connection and the GPIO pin. The positive voltage supply to the load is entirely sepa‐
rate from the Raspberry Pi or Arduino. This means that you are not restricted to
switching the logic level of the Arduino or Pi (3.3V or 5V) but can switch up to the
maximum voltage that the transistor is capable of switching.

Having said that, you will often use the positive voltage supply of an Arduino or
Raspberry Pi for the convenience of having a single voltage source.

See Also
For a discussion of bipolar transistors, see Recipe 5.1.

170 | Chapter 11: Switching

GPIO ports and their output logic are described in Recipe 10.7.

You will find an example of switching with a transistor using an Arduino in Recipe
11.6 and for a Raspberry Pi in Recipe 11.7.

For switching using a MOSFET, see Recipe 11.3.

11.2 Switch Power On the High Side
Problem
You want to switch using a BJT, but you need one end of the load to be connected to
ground.

Solution
The arrangement of Figure 11-1 is called low-side switching because the switching
takes place on the lower voltage side; that is, to GND rather than from the positive
supply. This means that whatever is being switched has to have a connection to the
positive supply voltage.

One approach to high-side switching is to simply rearrange Figure 11-1 a little as
shown in Figure 11-2.

Figure 11-2. High-side Switching with an NPN BJT (Restricted Switching Range)

The circuit of Figure 11-2 cannot switch voltages (+V) greater than the GPIO pin’s
voltage less half a volt.

A transistor in this arrangement is called an emitter follower (Recipe 16.4) because
the emitter will generally be about 0.6V less than the base. This means that we can
use this arrangement for high-side switching but only so long as the voltage at the
GPIO pin is less than +V.

In short, the circuit of Figure 11-2 is only useful for switch loads where one end of the
load must be connected to ground and the other does not need a supply voltage that
is greater than the control voltage of the GPIO pin.

11.2 Switch Power On the High Side | 171

Discussion
If you need to switch a higher voltage (perhaps 12V) you might be tempted to con‐
sider an alternative to Figure 11-2 that uses a PNP transistor rather than an NPN
transistor as shown in Figure 11-3.

Figure 11-3. High-side Switching with a PNP BJT (Defective)

This circuit is defective because Q2 will turn on with a base current when its base is
about 0.6V lower than +V. So, if you were trying to switch a 12V load from 5V logic,
the base voltage would always be over 0.6V and enough base current would flow to
keep the transistor on whether the GPIO pin was at 5V or GND.

High-side Switching with Tristate Logic
Having said that the schematic of Figure 11-3 is defective, there is a neat trick you can
do with a microcontroller to make it work over the full voltage range. The trick relies
on being able to change a GPIO pin from being an output to being an input from
your program. It works like this:

If the pin is an input, then almost no current will flow into the base of Q2 and so the
switch will be off. If you set the GPIO pin to be a low output, then Q2 will turn on.

The only real downside to this trick is that the controlling program will look very
confusing to anyone trying to work out what is going on.

The term tristate logic simply means that the GPIO pin can be in one of three states:
output high, output low, or input (floating).

If you need to be able to switch voltages of V+ that are greater than the 5V of your
Arduino or 3.3V of your Raspberry Pi and you don’t want to use the tristate logic
trick, then you will need to use the arrangement shown in Figure 11-4.

This uses a separate NPN transistor Q1 to control the base current to Q2 giving a full
switching range.

172 | Chapter 11: Switching

Figure 11-4. High-side Switching with an NPN BJT Driving a PNP BJT

Low-side switching (Recipe 11.1) is the most common and simplest arrangement,
and unless you have a good reason such as the need for one end of the load to be
connected to ground, you should use low-side switching.

See Also
For a discussion of NPN and PNP bipolar transistors, see Recipe 5.1.

GPIO ports and their output logic are described in Recipe 10.7.

You will find an example of switching with a transistor using an Arduino in Recipe
11.6 and for a Raspberry Pi in Recipe 11.7.

For switching using a MOSFET, see Recipe 11.3.

11.3 Switch Much More Power
Problem
You want to allow a GPIO pin to control more power than it otherwise could, but a
BJT isn’t enough.

Solution
You can use a MOSFET as an electronic switch. Use the transistor in a common-
source arrangement. Figure 11-5 shows the schematic for this circuit. Along
with Recipe 11.1, you will find yourself using this circuit a lot.

This type of switching is called “low-side” switching because the transistor acts as a
switch between the low voltage of GND and the load.

If the GPIO pin is high (3.3V or 5V) and exceeds the gate-threshold voltage of the
MOSFET, the MOSFET will turn on, allowing current to flow from +V through the
load to GND.

11.3 Switch Much More Power | 173

Choosing Logic-level MOSFETs

When using MOSFETs as switches controlled by GPIO pins you
should look for devices described as logic level. These have a low-
threshold voltage (generally 2V or less), whereas MOSFETs not
described as logic-level may well have gate-threshold voltages of 4V
to 7V.
Logic-level versions of regular MOSFETs often have the same
name, but an L after the name. For example, the FQP30N06L is the
logic-level version of the FQP30N06.
Low-power MOSFETs like the 2N7000 generally have pretty low
gate-threshold voltages anyway and are fine with 3.3V logic
without having the L designation.

Figure 11-5. Switching with an N-Channel Enhancement-mode MOSFET

Discussion
You may be wondering why the gate resistor R is needed. In reality for most MOS‐
FETS in most relatively low-current applications, it isn’t needed at all and you can just
connect the GPIO pin directly to the gate.

However, the MOSFET’s gate appears to the GPIO pin as a capacitor that will be
charged and discharged as the GPIO pin goes high and low. So, if you are switching
the MOSFET at high speed (say PWM at a high frequency) or the MOSFETs’ gate
capacitance is high (it increases with load current) then the maximum rated output
current of the GPIO pin may be exceeded and the transistors inside the GPIO output
could overheat. In any case, resistors are cheap and it’s good practice to include one.

In Figure 11-5 the gate of the MOSFET is floating. If it is connected to a GPIO set to
be an output, then the MOSFET will be in a stable state, but there are several reasons
why this might not be the case:

• The program to control the GPIO might not be running yet on your Raspberry
Pi, in which case the GPIO will be a floating input.

• The control hardware may be detachable from the Arduino or Raspberry Pi
GPIO pin while still retaining its positive supply.

174 | Chapter 11: Switching

• If the gate is left floating the load is likely to turn itself on and off in response to
electrical noise. This is just like the experience of a floating input in an Arduino
as described in Recipe 10.10.

To prevent this unwanted behavior, you can just add a pull-down resistor to keep the
gate low unless the GPIO pin is actively driving the gate (see Figure 11-6). This resis‐
tor should have a resistance of perhaps 10 times that of the gate-protection resistor
(R1) to prevent the effective voltage divider (Recipe 2.6) formed by R1 and R2 from
reducing the gate voltage by any significant amount.

Figure 11-6. Preventing a Floating Gate from Causing Problems

See Also
For a discussion of MOSFETs, see Recipe 5.3.

GPIO ports and their output logic are described in Recipe 10.7.

You will find an example of switching with a MOSFET using an Arduino in Recipe
11.6 and for a Raspberry Pi in Recipe 11.7.

For switching using a BJT, see Recipe 11.1.

11.4 Switch Much More Power on the High Side
Problem
You want to switch using a MOSFET, but you need to share a ground connection
between the load being switched and the Arduino or Raspberry Pi doing the switch‐
ing.

Solution
The problems with high-side switching using a MOSFET are similar to those
of Recipe 11.2. However, whereas in Recipe 11.2 it was okay to use an emitter-
follower configuration or PNP transistor on its own, the need for a gate-source volt‐

11.4 Switch Much More Power on the High Side | 175

age above the threshold voltage to turn the MOSFET on means that the switchable
range is reduced by at least the threshold voltage, making the circuit unsuitable for
most applications.

So, for high-side switching there is little alternative to using the circuit of Figure 11-7.

Figure 11-7. High-side Switching with a P-Channel MOSFET and BJT

Discussion
By using a BJT rather than a MOSFET for Q1, there will always be enough leakage
current through Q1 to keep the gate of Q2 low when the control pin is left floating.

See Also
For a discussion of MOSFETs, see Recipe 5.3.

GPIO ports and their output logic are described in Recipe 10.7.

You will find an example of switching with a MOSFET using an Arduino in Recipe
11.6 and for a Raspberry Pi in Recipe 11.7.

11.5 Choose Between a BJT and MOSFET
Problem
You can’t decide whether to use a BJT or a MOSFET for GPIO-controlled switching.

Solution
Use Table 11-1 to help you decide which NPN BJT or N-Channel MOSFET to use in
low-side switching.

Table 11-1. Choosing a transistor

 Technology Examples

under 100mA BJT or MOSFET 2N3904 or 2N7000

under 200mA MOSFET 2N7000

176 | Chapter 11: Switching

 Technology Examples

under 500mA Darlington or MOSFET MPSA14 or FQP30N06L

under 3A Darlington or MOSFET TIP120 or FQP30N06L

under 20A MOSFET FQP30N06L

While any of these transistors would technically work, over time you’ll find that you
return to a few of your favorite transistors.

Discussion
When it comes to switching small loads (say under 100mA) a small BJT (like the
2N3904) and a small MOSFET (like the 2N7000) are pretty much interchangeable. In
fact, their pinouts mean that they are in the same transistor package and are pin-
compatible.

Above 100mA but below 200mA I would usually select a 2N7000 because its low on-
resistance means that it will not get as hot as a BJT.

Between 200mA and 500mA, I would either use a Darlington MPSA14 to save space
over a FQP30N06L MOSFET (in a larger package), but only if I could afford the 1.5V
or more voltage drop of the MPSA14.

Between 500mA and 3A you are definitely in large-transistor territory in a TO-220
package. If you can afford the voltage drop of a Darlington then the TIP120 is a good
choice; otherwise, a FQP30N06L will serve you well.

For powers over 3A use a FQP30N06L with a heatsink.

See Also
See also Recipe 5.5.

2N3904 datasheet: https://www.sparkfun.com/datasheets/Components/2N3904.pdf

2N7000 datasheet: https://www.fairchildsemi.com/datasheets/2N/2N7000.pdf

MPSA14 datasheet: http://www.farnell.com/datasheets/43685.pdf

FQP30N06L datasheet: https://www.fairchildsemi.com/datasheets/FQ/FQP30N06L.pdf

TIP120 datasheet: https://www.fairchildsemi.com/datasheets/TI/TIP122.pdf

11.5 Choose Between a BJT and MOSFET | 177

https://www.sparkfun.com/datasheets/Components/2N3904.pdf
https://www.fairchildsemi.com/datasheets/2N/2N7000.pdf
http://www.farnell.com/datasheets/43685.pdf
https://www.fairchildsemi.com/datasheets/FQ/FQP30N06L.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP122.pdf

11.6 Switch with Arduino
Problem
You want to use an Arduino to switch a load on and off; that is, more current or a
higher voltage than the Arduino GPIO pin can handle.

Solution
If you have a 5V Arduino like the Arduino Uno, then each GPIO pin can switch a
maximum of 5V at 40mA. To increase either the voltage or the current, you need to
use a transistor. The principles and even the breadboard layouts are much the same
whether you use a BJT or a MOSFET. See Recipe 11.5 for the relative merits of each
technology.

Figure 11-8 shows the schematic for this.

Figure 11-8. Schematic for an Arduino Controlling a 12V Load

NOT for AC

This circuit is for low-voltage DC only. Do not try and use it to
switch AC. To do so would not work and would also be very dan‐
gerous.

Discussion
You can build this circuit on a breadboard to experiment. Figure 11-9 shows the
breadboard layout for the project using a 2N7000, which is good for 200mA (2.4W).
If you prefer, you could use a 2N3904 or an MPSA14 with exactly the same bread‐
board layout.

178 | Chapter 11: Switching

Figure 11-9. Breadboard Layout for Arduino Control Using 2N7000

If you have a higher-power LED lamp, you should use a FQP30N06L as shown in
Figure 11-10. Again, you could if you prefer use a TIP120.

Figure 11-10. Breadboard Layout for Arduino Control Using FQP30N06L

11.6 Switch with Arduino | 179

The Arduino test program for this project is listed here and is available in the book
downloads (see Recipe 10.2) where the sketch is called ch_11_on_off:

const int outputPin = 11;

void setup()
{
 pinMode(outputPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter 0 for off and 1 for on");
}

void loop()
{
 if (Serial.available())
 {
 char onOff = Serial.read();
 if (onOff == '1')
 {
 digitalWrite(outputPin, HIGH);
 Serial.println("Output ON.");
 }
 else if (onOff == '0')
 {
 digitalWrite(outputPin, LOW);
 Serial.println("Output OFF.");
 }
 }
}

This sketch follows a similar pattern to that of Recipe 10.13. Pin 11 is set to be an
output and when a single-command character “1” or “0” is sent from the Serial Moni‐
tor (Figure 11-11) digitalWrite is used to turn pin 11 on or off.

Figure 11-11. Using the Serial Monitor to Turn a Lamp On and Off

180 | Chapter 11: Switching

You can see the circuit in action in Figure 11-12, where a 12V SLA battery is used to
power the lamp.

Figure 11-12. Switching a 12V DC Lamp from an Arduino

Although intended as a demonstration circuit, this recipe is actually quite powerful,
allowing you to control the lamp from your computer.

See Also
For information on getting started with breadboard, see Recipe 20.1.

For transistor pinouts, see Appendix A.

The basics of an Arduino Uno are described in Recipe 10.1.

To use this same design with Raspberry Pi, see Recipe 11.7.

11.7 Switch with a Raspberry Pi
Problem
You want to use a Raspberry Pi to switch a load on and off; that is, more current or a
higher voltage than the GPIO pin can handle.

11.7 Switch with a Raspberry Pi | 181

Solution
The circuits used in Recipe 11.6 will also work just fine if you wire the control con‐
nection and GND to a Raspberry Pi rather than an Arduino. Figure 11-13 shows the
breadboard layout for using a 2N7000 MOSFET with a Raspberry Pi to switch a 12V
LED lamp module.

Figure 11-13. Breadboard Layout for Raspberry Pi Control Using 2N7000

To control the lamp, you can use the following program, which is called
ch_11_on_off.py and can be found with the downloads for the book (see Recipe 10.4):

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

led_pin = 18

GPIO.setup(led_pin, GPIO.OUT)

try:
 while True:
 answer = input("1 for on 0 for off: ")
 if answer == 1:
 GPIO.output(led_pin, True) # LED on
 elif answer == 0:
 GPIO.output(led_pin, False) # LED off
finally:
 print("Cleaning up")
 GPIO.cleanup()

182 | Chapter 11: Switching

When you run the program you should see this in the terminal session:

$ sudo python ch_11_on_off.py
1 for on 0 for off: 1
1 for on 0 for off: 0

When you enter 1, the lamp should light (pressing 0 will turn it off again).

Discussion
As with Recipe 11.6 you can also use other transistors than the 2N7000 or
FQP20N06L MOSFETs.

See Also
For information on getting started with breadboards, see Recipe 20.1.

For transistor pinouts, see Appendix A.

The basics of a Raspbery Pi are described in Recipe 10.3.

To use this same design with an Arduino, see Recipe 11.6.

11.8 Reversible Switching
Problem
You want to be able to switch a load on both the high and low sides because you want
to be able to reverse the flow of current through your load, perhaps to control the
direction of a DC motor.

Solution
Use transistors in the half-bridge configuration shown in Figure 11-14.

Figure 11-14. A Half-Bridge

11.8 Reversible Switching | 183

This circuit combines elements of Recipe 11.3 and Recipe 11.4 and relies on their
being three power lines: +V, –V, and GND in the middle. Thus, the three power lines
might be +6V, –6V, and 0V.

The control signals A and B turn on Q2 and Q3, respectively. If A and B are both low
with respect to –V no current will flow through the load. If A is high, Q2 will conduct
and current will flow through Q2 to the load and then to GND. Conversely, if A is
low and B is high, Q3 will conduct and current will flow from GND through the load
to –V.

Under no circumstances should A and B both be high, since if both Q2 and Q3 are
conducting there will effectively be a short-circuit between +V and –V and a damag‐
ingly large current will flow. In fact, if you are connecting A and B to GPIO pins and
using software to set them high or low, you should put a small delay in between set‐
tings to allow A and B to be high at the same time. For example, to change from A
high, B low to A low, B high, you should follow these steps:

1. Set A low
2. Delay
3. Set B high

Discussion
The half-bridge and its relative the full-bridge are often used to control DC motors,
where their ability to reverse the direction of the flow of current allows them to
reverse the direction in which the motor rotates.

Although it is perfectly possible to build half-bridge circuits from discrete compo‐
nents, it is more common to use an IC. You will meet several of these in Chapter 13.

See Also
For a full-bridge circuit, see Recipe 13.3.

For the FQP27P06 P-Channel MOSFET’s datasheet, see https://www.sparkfun.com/
datasheets/Components/General/FQP27P06.pdf.

11.9 Control a Relay from a GPIO Pin
Problem
You want to switch a relay on and off using an Arduino or Raspberry Pi GPIO pin.

184 | Chapter 11: Switching

https://www.sparkfun.com/datasheets/Components/General/FQP27P06.pdf
https://www.sparkfun.com/datasheets/Components/General/FQP27P06.pdf

Solution
Use a low-power BJT or MOSFET to switch the power to the relay’s coil as shown
in Figure 11-15.

Figure 11-15. Controlling a Relay from a GPIO Pin

A typical relay coil will need about 50mA to activate the relay contacts, which is
slightly too much to use an Arduino pin directly and far too much for a Raspberry Pi
GPIO pin. A relay with a nominal 5V coil will generally work with a little over 4V if
you use a BJT, but supplying the full 5V by way of a MOSFET is generally better. So a
good choice for Q1 would be a 2N7000. R is not at all critical, but 1kΩ would be fine.

The diode D1 is called a “freewheeling” or “flyback” diode and provides a discharge
path for high voltages generated as the relay coil is switched off, which protects Q1.

Discussion
Building a design like this on a breadboard can be a little tricky, as most common
relay packages don’t have pins that will fit into the breadboard, so you may have to
solder short extension wires to the relay coil or use a prototyping setup like the
MonkMakes Protoboard that has a place to solder a relay. Figure 11-16 shows the
breadboard layout for using a relay with an Arduino and Figure 11-17 for a Rasp‐
berry Pi.

To test out the relay on an Arduino and Raspberry Pi, you can use the programs
described in Recipe 11.6 and Recipe 11.7, respectively.

Although it can be tempting to try to get away with connecting the relay coil directly
to a GPIO pin, this may damage the Arduino or Pi and is most certainly operating
outside of the specifications for the Arduino, Raspberry Pi, or relay and cannot be
guaranteed to work correctly.

11.9 Control a Relay from a GPIO Pin | 185

https://monkmakes.com/pb

Figure 11-16. Breadboard Layout for Controlling a Relay from an Arduino

Figure 11-17. Breadboard Layout for Controlling a Relay from a Raspberry Pi

See Also
For information on relays see Recipe 6.4.

186 | Chapter 11: Switching

11.10 Control a Solid-State Relay from a GPIO Pin
Problem
You want to connect a SSR with an GPIO pin and control the SSR from an Arduino
or Raspberry Pi.

Solution
SSRs are generally opto-isolated, which means that controlling them is as simple as
using an LED. In fact, it’s usually easier because in an SSR a series resistor is generally
included. Figure 11-18 shows an SSR module connected to a Raspberry Pi. The SSR’s
negative input terminal is connected to GND and the positive terminal to a GPIO
pin.

Figure 11-18. Controlling an SSR Using a Raspberry Pi GPIO Pin

Switch AC

Do not use an SSR to control AC unless you are sure you can wire
things up safely and you know exactly what you are doing.
Under no circumstances should you work on a live/hot system
while you are prototyping, and always use an RCD-protected AC
outlet.
See also Recipe 21.12.

11.10 Control a Solid-State Relay from a GPIO Pin | 187

Discussion
To test out the relay on an Arduino and Raspberry Pi, you can use the programs
described in Recipe 11.6 and Recipe 11.7, respectively.

See Also
A safe and easy way to control AC using an SSR is to use a PowerSwitch Tail.

11.11 Connect to Open-Collector Outputs
Problem
You need to know how to use a module (such as a motion detector) or other design
that has open-collector outputs.

Solution
As the name suggests, a circuit that has an open-collector output uses an NPN BJT as
an output stage (Figure 11-19) with the implication that the emitter is connected to
GND, with no internal connections to the collector except to the output.

Figure 11-19. A Module with an Open-Collector Output

At first glance this may seem strange, and a common mistake is to treat an open-
collector output as a logic output and connect it straight to a GPIO pin. Unless the
internal pull-up resistor on the GPIO pin (Recipe 10.7) is enabled, this will not work.

Leaving the collector floating like this has the advantage that by simply using a resis‐
tor from the collector to a positive supply, the output voltage of the open collector
can be set to match that of the GPIO input you are connecting it to. Figure 11-20
shows how an open-collector output can be used with 3.3V logic (left) and 5V logic
(right).

The value of R1 is not critical and needs to lie somewhere in the large range of not
exceeding the transistor’s collector current limit and not being succeptable to electri‐

188 | Chapter 11: Switching

http://www.powerswitchtail.com/Pages/default.aspx

cal noise. So, anything between 1kΩ and 1MΩ is fine. Common resistor values for
this are 1kΩ and 10kΩ.

Figure 11-20. Pulling Up an Open-Collector Output

If your GPIO pin has the ability to enable an internal pull-up resistor you can use this
instead of an external resistor.

Discussion
If the circuit or module you are using specifies the current rating of the open-
collector output, you can use it to directly drive a load (e.g., a relay). The load should
be in place of the resistor between the output and a positive voltage supply.

The MOSFET equivalent of an open-collector output is the open-drain output (see
Figure 11-21). This can be used in exactly the same way as its BJT equivalent. In fact,
it’s not uncommon to find device outputs labeled as open collector that actually use a
MOSFET.

Figure 11-21. An Open-Drain Output

See Also
For more information on BJTs, see Recipe 5.1.

To learn about GPIO pins, see Recipe 10.7.

11.11 Connect to Open-Collector Outputs | 189

CHAPTER 12

Sensors

12.0 Introduction
This chapter looks at sensors that convert some physical measurement such as tem‐
perature, light, or physical movement into an analog or digital electronic signal.

Many different sensors are explained, and where appropriate, ways of using them
with an Arduino or Raspberry Pi are included.

12.1 Connect a Switch to an Arduino or Raspberry Pi
Problem
You want to be able to convert a mechanical movement to a digital on/off signal that
you can use with an Arduino or Raspberry Pi.

Solution
Connect the switch between GND and a GPIO pin set to be a digital input as shown
in Figure 12-1 and enable the GPIO pin’s internal pull-up resistor.

Figure 12-1. Connecting a Switch to a GPIO Pin

191

Your software will probably also need to “debounce” the signal from the switch.

Contact Bounce
It’s tempting to think that when you press a push switch or flip a toggle switch the
contacts will instantly close in one single action and a GPIO input connected to the
switch will instantly change from high to low (assuming the situation of Figure 12-1).

In reality, switch contacts will often bounce as the switch is pressed, and a button
press might make several transitions between high and low as it is pressed, before set‐
tling.

Figure 12-2 shows the oscilloscope (Recipe 21.9) trace for a particularly bouncy but‐
ton. The horizontal axis is time and you can see several shadowy spikes both as the
button is pressed and released.

Figure 12-2. Switch Contacts Bouncing

Arduino
Here is an Arduino sketch that writes a message to the Serial Monitor whenever the
switch is pressed. You can find this sketch (ch_12_switch) with the downloads for the
book (see Recipe 7.2):

const int inputPin = 12;

void setup()
{
 pinMode(inputPin, INPUT_PULLUP);

192 | Chapter 12: Sensors

 Serial.begin(9600);
}

void loop()
{
 if (digitalRead(inputPin) == LOW)
 {
 Serial.println("Button Pressed!");
 while (digitalRead(inputPin) == LOW) {};
 delay(10);
 }
}

The internal pull-up resistor is turned on by specifying INPUT_PULLUP in the pinMode
function.

Inside the loop the inputPin is continually read until it is pressed (becomes LOW). At
this point, a message is displayed in the Serial Monitor and the while loop ensures
there are no further triggerings until the switch has been released. The debouncing is
achieved by the 10-millisecond delay that is triggered after each button press is detec‐
ted. This gives the switch contacts time to settle before they are tested again.

You can try out the example by poking the pins of a tactile push switch between GND
and pin 12 on the Arduino as shown in Figure 12-3.

Figure 12-3. Connecting a Tactile Push Switch to an Arduino

12.1 Connect a Switch to an Arduino or Raspberry Pi | 193

Raspberry Pi
The equivalent code for a Raspberry Pi is listed here (ch_12_switch.py):

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

input_pin = 23

GPIO.setup(input_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

try:
try:
 while True:
 if GPIO.input(input_pin) == False:
 print("Button Pressed!")
 while GPIO.input(input_pin) == False:
 time.sleep(0.01)
finally:
 print("Cleaning up")
 GPIO.cleanup()

The logic of this program follows exactly the same pattern as for the Arduino.

Having male GPIO pins on a Raspberry Pi makes it a little more difficult to attach a
switch. One way to attach the switch is to use a microswitch pushed into a pair of
female-to-female jumper wires (Figure 12-4) or use a Squid Button (Figure 12-5).

Figure 12-4. Connecting a Tactile Push Switch to a Raspberry Pi

194 | Chapter 12: Sensors

Figure 12-5. Connecting a Squid Button to a Raspberry Pi

If you plan to use a number of push switches, then whether or not you are using a
Squid Button, you can use the Squid library to simplify the process of debouncing.
Download and install the Squid library from https://github.com/simonmonk/squid
where you will also find installation instructions. Once installed, the test program can
be simplified to the following example (ch_12_switch_squid.py):

from button import *
b = Button(23)

while True:
 if b.is_pressed():
 print("Button Pressed!")

Discussion
Microswitches (Figure 12-6) are push switches that are not designed to be directly
pressed by a person, but rather have a lever attached and are used to sense physical
movement such as when a linear actuator has reached its end position or as a safety
interlock to make sure a microwave door is closed.

The microswitch is an SPDT device generally with closed, normally open, and com‐
mon terminals (see Recipe 6.2).

Although switch using an Arduino or Raspberry Pi generally uses a pull-up resistor
and switches to ground, you can also switch to the positive supply.

12.1 Connect a Switch to an Arduino or Raspberry Pi | 195

https://github.com/simonmonk/squid

Figure 12-6. A Microswitch

To switch to the positive supply on an Arduino, you have to use an external pull-
down resistor to prevent the input from floating because the Arduino does not have
internal pull-down resistors on its GPIO pins (pin mode INPUT).

On the other hand, the Raspberry Pi does have internal pull-down resistors that can
be enabled for a particular pin using the command:

GPIO.setup(input_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

See Also
For information on the Squid Button, see https://www.monkmakes.com/squid_combo/.

Digital inputs are also described in Recipe 10.10 and Recipe 10.11.

GPIO pins are described in Recipe 10.7.

12.2 Sense Rotational Position
Problem
You want to use a rotating knob with your Arduino or Raspberry Pi.

Solution
You’ll want a type of rotary encoder called a quadrature encoder, which behaves like a
pair of switches (Figure 12-7). The sequence in which they open and close as the
rotary encoder’s shaft is turned determines the direction of rotation.

196 | Chapter 12: Sensors

https://www.monkmakes.com/squid_combo/

Figure 12-7. Schematic of a Rotary Encoder

A basic rotary encoder will have three pins. One for A, one for B, and a common pin.
The rotary encoder shown in Figure 12-7 has two extra pins that are used for a push
switch that is activated when the knob is pushed rather than turned.

When using a rotary encoder with a microcontroller or SBC, the common contact is
connected to GND and the switch contacts connected to digital inputs with pull-up
resistors enabled.

Arduino Software
The following Arduino sketch, which is called ch_12_quadrature, can be found with
the downloads for the book (Recipe 10.12). The sketch assumes that the two switch
pins are connected to pins 6 and 7:

const int aPin = 6;
const int bPin = 7;

int x = 0;

void setup()
{
 pinMode(aPin, INPUT_PULLUP);
 pinMode(bPin, INPUT_PULLUP);
 Serial.begin(9600);
}

void loop()
{
 int change = getEncoderTurn();
 if (change != 0)
 {
 x += change;
 Serial.println(x);
 }

12.2 Sense Rotational Position | 197

}

int getEncoderTurn()
{
 // return -1, 0, or +1
 static int oldA = 0;
 static int oldB = 0;
 int result = 0;
 int newA = digitalRead(aPin);
 int newB = digitalRead(bPin);
 if (newA != oldA || newB != oldB)
 {
 // something has changed
 if (oldA == 0 && newA == 1)
 {
 result = (oldB * 2 - 1);
 }
 else if (oldB == 0 && newB == 1)
 {
 result = -(oldA * 2 - 1);
 }
 }
 oldA = newA;
 oldB = newB;
 return result;
}

To avoid skipping turns, the function getEncoderTurn must be called as frequently as
possible in loop.

getEncoderTurn compares the current state of the A and B switches with their states
last time getEncoderTurn was called to infer whether the knob is being turned clock‐
wise or counterclockwise, returning a value of 1 or –1, respectively. If there is no
change to the values of A and B then 0 is returned.

Raspberry Pi Software
You can find the Raspberry Pi version of the rotary encoder program in the file
ch_12_quadrature.py (see Recipe 10.4) and here:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

input_A = 18
input_B = 23

GPIO.setup(input_A, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(input_B, GPIO.IN, pull_up_down=GPIO.PUD_UP)

old_a = 1

198 | Chapter 12: Sensors

old_b = 1

def get_encoder_turn():
 # return -1, 0, or +1
 global old_a, old_b
 result = 0
 new_a = GPIO.input(input_A)
 new_b = GPIO.input(input_B)
 if new_a != old_a or new_b != old_b :
 if old_a == 0 and new_a == 1 :
 result = (old_b * 2 - 1)
 elif old_b == 0 and new_b == 1 :
 result = -(old_a * 2 - 1)
 old_a, old_b = new_a, new_b
 time.sleep(0.001)
 return result

x = 0

while True:
 change = get_encoder_turn()
 if change != 0 :
 x = x + change
 print(x)

The test program counts up as you turn the rotary encoder clockwise, and counts
down when you rotate it counterclockwise:

pi@raspberrypi ~ $ sudo python rotary_encoder.py
1
2
3
4
5
6
7
8
9
10
9
8
7
6
5
4

Discussion
Both the Arduino and Raspberry Pi versions of the software work in just the same
way.

12.2 Sense Rotational Position | 199

Figure 12-8 shows the sequence of pulses that you will get from the two contacts, A
and B. You can see that the pattern repeats itself after four steps (hence the name
quadrature encoder).

Figure 12-8. How Quadrature Encoders Work

When rotating clockwise (left to right in Figure 12-8), the sequence will be:

Phase A B
1 0 0

2 0 1

3 1 1

4 1 0

When rotating in the opposite direction, the sequence of phases will be reversed:

Phase A B
4 1 0

3 1 1

2 0 1

1 0 0

The Python program listed previously implements the algorithm for determining the
rotation direction in the function get_encoder_turn. The function will return 0 (if
there has been no movement), 1 for a rotation clockwise, or -1 for a rotation counter‐
clockwise. It uses two global variables, old_a and old_b, to store the previous states of
the switches A and B. By comparing them with the newly read values, it can deter‐
mine (using a bit of clever logic) which direction the encoder is turning.

The sleep period of 1 millisecond is used to ensure that the next new sample does not
occur too soon after the previous sample; otherwise, the transitions can give false
readings (see “Contact Bounce” on page 192).

200 | Chapter 12: Sensors

The test program should work reliably no matter how fast you twiddle the knob on
the rotary encoder; however, try to avoid doing anything time consuming in the loop,
or you may find that turn steps are missed.

See Also
To use a pot to sense rotation, use Recipe 12.3.

12.3 Sense Analog Input from Resistive Sensors
Problem
You want to use a sensor whose resistance varies with some property with an analog
input. For example, a photoresistor or thermistor to sense light and temperature,
respectively.

Solution
Put the resistive element in a voltage divider with a fixed-value resistor to convert the
resistance measurement into a voltage as shown in Figure 12-9.

Figure 12-9. Using a Photoresistor with an Analog Input

For Raspberry Pi?

The Raspberry Pi does not have analog inputs, so to use resistive
sensors with a Raspberry Pi, you either need to add analog inputs
to your Raspberry Pi (see Recipe 12.4) or use the step-response
method (see Recipe 12.5).

Discussion
When it comes to choosing the value of a fixed resistor, the aim should be to try and
maximize the range of output voltages that will be presented to the analog input.
With an Arduino Uno’s analog input range of 0 to 5V you ideally want an analog
input voltage of 0 to 5V. Because a voltage divider “divides” the input voltage, you are

12.3 Sense Analog Input from Resistive Sensors | 201

never going to get the full voltage range as an output unless you use a higher input
voltage. This introduces the potential for overvoltage at the analog input and
so generally it is better to accept a slightly narrowed range rather than risk damaging
your board.

Let’s take as an example a photoresistor that has a minimum resistance of 1kΩ under
bright light and a resistance that rises to 1MΩ in total darkness. Assuming that you
are using a 5V Arduino:

Vout = R2
R1 + R2 . Vin = 5 × R2

R1 + R2

If we pick a value for the fixed resistor R2 of about 10 times of the minimum value of
the photoresistor R1 then R2 would have a value of 10kΩ, so at maximum brightness:

Vout = 5 × R2
R1 + R2 = 5 × 10k

1k + 10k = 4 . 55V

For a resistance of 10k for the photoresistor, the Vout would be 2.5V and when the
photoresistor is in complete darkness (1MΩ), the Vout would fall to 0.05V.

This would give pretty good coverage of the whole range of the photoresistor’s read‐
ings.

The following Arduino sketch assumes that R1 is a photoresistor with 1kΩ light
resistance and R2 is a fixed 10kΩ resistor. The sketch calculates the resistance of R1
and displays it in the Arduino IDE’s Serial Monitor every half-second. You can find
the sketch here and with the downloads for the book (see Recipe 10.2). It is called
ch_12_r_adc.

const int inputPin = A0;
const float r2 = 1000.0;
const float vin = 5.0;

void setup()
{
 pinMode(inputPin, INPUT);
 Serial.begin(9600);
}

void loop()
{
 int reading = analogRead(inputPin);
 float vout = reading / 204.6;
 float r1 = (r2 * (vin - vout)) / vout;
 Serial.print(r1); Serial.println(" Ohms");
 delay(500);
}

202 | Chapter 12: Sensors

See Also
For an introduction to photoresistors, see Recipe 2.8.

For Arduino code to display such analog readings, see Recipe 10.12.

For information on voltage dividers, see Recipe 2.6.

To add analog inputs to a Raspberry Pi, see Recipe 12.4.

12.4 Add Analog Inputs to Raspberry Pi
Problem
You want to measure an analog voltage with a Raspberry Pi.

Solution
The Raspberry Pi does not have analog inputs so connect an ADC IC to the Rasp‐
berry Pi.

Use the MCP3008 8-channel ADC chip. This chip actually has eight analog inputs, so
you can connect up to eight sensors to one of these and interface to the chip using the
Raspberry Pi SPI. Figure 12-10 shows the schematic for using an MCP3008 with a
Raspberry Pi.

Figure 12-10. Adding Analog Inputs to a Raspberry Pi Using the MCP3008

Note that these analog inputs have a maximum input voltage of 3.3V. You will also
need to make sure the SPI of the Raspberry Pi is enabled and the py-spidev Python
library (included in new releases of Raspbian) is installed (Recipe 10.16).

12.4 Add Analog Inputs to Raspberry Pi | 203

Discussion
You can find the Raspberry Pi program to access and display the analog readings
from analog channel 0 in the program ch_12_mcp3008.py (see Recipe 10.4):

import spidev, time

spi = spidev.SpiDev()
spi.open(0, 0)

def analog_read(channel):
 r = spi.xfer2([1, (8 + channel) << 4, 0])
 adc_out = ((r[1]&3) << 8) + r[2]
 return adc_out

while True:
 reading = analog_read(0)
 voltage = reading * 3.3 / 1024
 print("Reading=%d\tVoltage=%f" % (reading, voltage))
 time.sleep(1)

See Also
You can use this recipe with Recipe 12.7, Recipe 12.9, and Recipe 12.10 to read analog
sensors with a Raspberry Pi.

You can use resistive sensors with a Raspberry Pi directly, without the need for an
ADC IC (see Recipe 12.5).

12.5 Connect Resistive Sensors to the Raspberry Pi
without an ADC
Problem
You want to use a resistive sensor with a Raspberry Pi, without the need for an ADC
IC.

Solution
See how long it takes for a capacitor to charge the resistive sensor and use this time to
calculate the resistance of the sensor.

Figure 12-11 shows the schematic for measuring resistance using nothing more than
two resistors and a capacitor.

A Python library to simply read values of resistance can be downloaded from GitHub
where you will also find installation instructions and documentation.

204 | Chapter 12: Sensors

https://github.com/simonmonk/pi_analog

Figure 12-11. Schematic for Measuring Resistance Using the Step-response Method

The following example shows how you can use this library to measure the value of
the sensor resistance when the schematic of Figure 12-11 is wired up to a Raspberry
Pi with pin A connected to GPIO 18 and pin B to GPIO 23. The program is located in
the examples folder of the pi_analog library and is called resistance_meter.py:

from PiAnalog import *
import time

p = PiAnalog()

while True:
 print(p.read_resistance())
 time.sleep(1)

To test out the method, try using a few different values of fixed resistance. You can
also use different values of C1 and R1 by specifying the value of capacitance in µF and
R1 in Ω in the constructor. For example, for high resistance values you might want to
use a smaller capacitor (10nF) to speed up the conversion. You could use the follow‐
ing code:

from PiAnalog import *
import time

p = PiAnalog(0.01, 1000)

while True:
 print(p.read_resistance())
 time.sleep(1)

Discussion
This technique relies on the ability of GPIO pins to switch between being an input
and an output while the controlling program is running.

12.5 Connect Resistive Sensors to the Raspberry Pi without an ADC | 205

The basic steps for taking a measurement are as follows:

1. Make pin A an input. Make pin B an output and LOW and wait until the capaci‐
tor is discharged.

2. Make a note of the time. Make pin B an input and pin A a HIGH output. C1 will
now start to charge.

3. When the voltage across C1 reaches about 1.35V it will stop being a LOW input
and be measured as HIGH by the GPIO pin connected to B. The time taken for
this to happen is a measurement of the resistance of the sensor and R1.

See Also
The Monk Makes Electronics Starter Kit for Raspberry Pi has several projects that use
this step-response method to measure temperature and light.

12.6 Measure Light Intensity
Problem
You want to measure light intensity with a Raspberry Pi or Arduino.

Solution
If you have an Arduino or board with analog inputs then use Recipe 12.3. If your
board does not have analog inputs (say a Raspberry Pi) then use Recipe 12.4 or
Recipe 12.5.

Discussion
All the preceding methods will work just fine for determining if the sensor is illumi‐
nated more brightly in one reading than in another, but obtaining a measurement in
common units of light measurement is a lot trickier. Questions that make getting the
light measurement difficult are:

• What frequencies of light are you talking about? All light frequencies, or just the
ones the photoresistor is sensitive to?

• Do you want to measure light from a particular direction? If so, the angle of view
becomes important.

Even if you answer these questions, you get into problems with the linearity of the
photoresistor and will likely need to manually calibrate your meter to account for
manufacturing differences in the photoresistors.

206 | Chapter 12: Sensors

https://monkmakes.com/rpi_esk

In other words, despite its apparrant simplicity making a light meter that will give
you a reading in Lux or Watts per square meter is a specialist task.

See Also
For a discussion on light measurement, see https://en.wikipedia.org/wiki/Lux.

12.7 Measure Temperature on Arduino or Raspberry Pi
Problem
You want to measure temperature with an Arduino or device with analog inputs.

Solution
Use a thermistor in a voltage-divider arrangement (see Recipe 12.3), calculate the
resistance, and then use the Steinhart–Hart equation to calculate the temperature.

Figure 12-12 shows the schematic for connecting a thermistor to an Arduino analog
input. You should use an NTC thermistor, which has a specified nominal resistance
(its resistance at 25° C) and a value of B (sometimes called beta) that determines its
resistance characteristics.

Figure 12-12. Connecting a Thermistor to an Analog Input

You can calculate the resistance of the thermistor R1 using the voltage-divider for‐
mula (see Recipe 2.6):

Vout = R2
R1 + R2 . Vin

12.7 Measure Temperature on Arduino or Raspberry Pi | 207

https://en.wikipedia.org/wiki/Lux

This can be rearranged to:

R1 =
R2 Vin − Vout

Vout

With a 5V Arduino and a fixed 1k resistor for R2, this gives:

R1 =
R2 Vin − Vout

Vout
=

R2 5 − Vout
Vout

The Steinhart–Hart equation states that:

1
t = 1

t0
+ 1

B ln R
R0

where:

• t is the temperature in Kelvin (subtract 273.15 for degrees C)
• t0 is 25° C (the standard temperature for the thermistor’s base resistance)
• B is a parameter of the thermistor that determines its sensitivity
• R is the resistance of the thermistor at temperature t
• R0 is the resistance of the thermistor at 25° C

If you plug all this math into an Arduino sketch and wire up a thermistor as shown in
Figure 12-12, you end up with the following code, which can also be found with the
downloads for the book in the sketch ch_12_thermistor:

const int inputPin = A0;

// r2 is the bottom fixed resistor in the voltage divider
const float r2 = 1000.0;

// thermistor properties
const float B = 3800.0;
const float r0 = 1000.0;

// other constants
const float vin = 5.0;
const float t0k = 273.15;
const float t0 = t0k + 25;

void setup()
{
 pinMode(inputPin, INPUT);
 Serial.begin(9600);
}

208 | Chapter 12: Sensors

void loop()
{
 int reading = analogRead(inputPin);
 float vout = reading / 204.6;
 float r = (r2 * (vin - vout)) / vout;
 float inv_t = 1.0/t0 + (1.0/B) * log(r/r0);
 float t = (1.0 / inv_t) - t0k;

 Serial.print(t); Serial.println(" deg C");
 delay(500);
}

Discussion
Thermistors have become less common for measuring temperature in favor of
temperature-sensing ICs. Some ICs are analog devices that produce an output voltage
proportional to the temperature like the LM35 and TMP36. Others use a digital inter‐
face like the popular DS18B20.

See Also
To measure temperature using a thermistor, the step-response method, and a ther‐
mistor, see Recipe 12.8.

You can find an example of using an analog temperature-sensing IC in Recipe 12.10
and a digital device in Recipe 12.11.

12.8 Measure Temperature without an ADC on the
Raspberry Pi
Problem
You want to measure temperature using a thermistor, but have a Raspberry Pi, which
does not have analog inputs.

Solution
Use a thermistor and the pi-analog library as described in Recipe 12.5. Figure 12-13
shows the schematic for connecting a thermistor to a Raspberry Pi.

The thermistor should be an NTC device. This just means that as the temperature
gets hotter the resistance gets lower. You will need to know its nominal resistance (at
25 C) and its value of B.

12.8 Measure Temperature without an ADC on the Raspberry Pi | 209

The pi-analog library has a program for reading the temperature in degrees C that
you will find in the examples folder for the library called thermometer.py. The code for
this is listed here:

from PiAnalog import *
import time

p = PiAnalog()

while True:
 print(p.read_temp_c(3800, 1000))
 time.sleep(1)

Figure 12-13. Connecting a Thermistor to a Raspberry Pi

The two parameters to read_temp_c are the thermistor’s value of B and resistance,
which should be changed to suit your thermistor.

Discussion
For a device like the Raspberry Pi that does not have analog inputs, an alternative sol‐
ution is to use an IC with a digital interface like the DS18B20. However, these are
considerably more expensive than a thermistor, capacitor, and a couple of resistors.

See Also
To use a thermistor with analog inputs, see Recipe 12.7.

For more information on thermistors, see https://en.wikipedia.org/wiki/Thermistor.

You can find an example of using an analog temperature-sensing IC in Recipe 12.10.

210 | Chapter 12: Sensors

https://en.wikipedia.org/wiki/Thermistor

12.9 Measure Rotation Using a Potentiometer
Problem
You want to measure rotary position using a pot (variable resistor) with a microcon‐
troller or SBC.

Solution

Option 1
Use the pot as a potential divider, with the slider attached to an analog input as shown
in Figure 12-14.

Figure 12-14. Using a Pot to Sense Rotary Position with an Analog Input

The voltage at the slider will vary from 0V to the supply voltage as you rotate the pot’s
knob. You can use the same test program as Recipe 12.3 to measure the position.

Although a Raspberry Pi does not have analog inputs, you can still use this technique
with a Raspberry Pi if you add an ADC chip as described in Recipe 12.4.

Option 2
For devices without an analog input, you can use the step-response method to meas‐
ure the resistance between one end of the pot and the slider as shown in Figure 12-15.

Figure 12-15. Using a Pot to Sense Rotary Position with the Step-response Method

12.9 Measure Rotation Using a Potentiometer | 211

The resistance between the slider and the end of the pot will vary from 0Ω to the
maximum resistance of the pot as you rotate the pot’s knob. You can use the test
program from Recipe 12.5 to measure the resistance of the pot and hence the rotary
position.

Discussion
The voltage-divider approach will produce more consistent results than the step-
response method.

See Also
For more on pots, see Recipe 2.3.

You can use a quadrature encoder (Recipe 12.2) to measure rotary movement.

For background on voltage dividers, see Recipe 2.6.

12.10 Measure Temperature with an Analog IC
Problem
You want to measure temperature using a linear temperature-sensing IC that pro‐
duces an output voltage proportional to the temperature.

Solution
Use a temperature-sensing IC such as the TMP36 or LM35. Figure 12-16 shows how
you would connect such a device to the analog input of an Arduino. If you want to
use such a sensor with a Raspberry Pi, you need to add analog inputs as described in
Recipe 12.4. The TMP36 can operate from 3.3V or 5V.

Figure 12-16. Connecting an Analog Temperature-sensing IC to an Arduino Analog
Input

212 | Chapter 12: Sensors

Note that only the SMD version of this IC has the extra SHUTDOWN pin. This can
be connected to a digital output of, say, an Arduino to reduce the current consump‐
tion of the IC to 100nA when the pin is set to LOW.

C1 should be placed as close to the IC as possible.

The temperature of a TMP36 in degrees C (let’s call it t) is related to the voltage by the
following formula:

t = 100v − 50

where v is the output voltage of the TMP36. So, if the output voltage is 0V, the tem‐
perature is –50° C; if it is 1V, the temperature is 50° C.

Figure 12-17 shows the breadboard layout for connecting the three-pin through-hole
version of the TMP36, connected to an Arduino.

Figure 12-17. Connecting a TMP36 to an Arduino using a Solderless Breadboard

The Arduino sketch ch_12_tmp36 illustrates the use of this device. You can find this
sketch here and with the downloads for the book (see Recipe 10.2):

const int inputPin = A0;

const float sensitivity = 0.01; // V/deg C
const float offset = -50.0; // deg C

void setup()
{
 pinMode(inputPin, INPUT);

12.10 Measure Temperature with an Analog IC | 213

 Serial.begin(9600);
}

void loop()
{
 int reading = analogRead(inputPin);
 float volts = reading / 204.6;
 float degC = (volts / sensitivity) + offset;
 // float degF = degC * 9.0 / 5.0 + 32.0;
 Serial.println(degC);
 delay(500);
}

The two constants sensitivity and offset allow you to use the sketch with other
temperature sensors in the TMP36 family of ICs that have different sensitivity and
temperature ranges.

Discussion
The TMP36 is not a very accurate device. The datasheet says ±2° C, which is fairly
typical in practice and probably with similar accuracy as a thermistor (although the
math is a lot easier). For greater accuracy, you should look at a digital sensor like the
DS18B20 (see Recipe 12.11).

See Also
For the TMP36 datasheet, see http://bit.ly/2mbtFsg.

To measure temperature using a thermistor and an analog input, see Recipe 12.7.

You don’t have to have a microcontroller or SBC to make use of a sensor like this. For
simple thermostatic applications, you can use a comparator IC (see Recipe 17.10).

12.11 Measure Temperature with a Digital IC
Problem
You want to measure temperature accurately with an Arduino or Raspberry Pi.

Solution
Use a digital temperature measurement IC like the DS18B20, which is factory calibra‐
ted to provide an accuracy of ±0.5° C.

This IC uses a 1-wire interface bus that allows up to 255 of the ICs to be connected to
just one GPIO port. Figure 12-18 shows a schematic diagram for connecting a
DS18B20s to an Arduino. The IC will work just as well with the 3.3V supply of a

214 | Chapter 12: Sensors

http://bit.ly/2mbtFsg

Raspberry Pi, although in the case of the Pi, GPIO pin 4 must be used as this pin is
earmarked for use by the 1-wire interface.

Figure 12-18. Wiring a DS18B20 Temperature Sensor to an Arduino

The 4.7kΩ external pull-up resistor is necessary for the 1-wire bus to operate reliably.

Arduino Software
Having connected the DS18B20 as shown in Figure 12-18, you will need to download
the OneWire library and the DallasTemperature library. In both cases choose the
Download ZIP option from the GitHub page and then add the ZIP library to your
Arduino IDE from the Sketch→Include Library→Add ZIP Library menu option.

The following sketch illustrates the use of a single DS18B20, reporting the tempera‐
ture to the Serial Monitor every half-second. You can find the sketch here and with
the downloads for the book; it is called ch_12_ds18b20:

#include <OneWire.h>
#include <DallasTemperature.h>

const int tempPin = 2;

OneWire oneWire(tempPin);
DallasTemperature sensors(&oneWire);

void setup()
{
 Serial.begin(9600);
 sensors.begin();
}

void loop() {
 sensors.requestTemperatures();
 float temp = sensors.getTempCByIndex(0);
 Serial.println(temp);
}

12.11 Measure Temperature with a Digital IC | 215

https://github.com/PaulStoffregen/OneWire
https://github.com/PaulStoffregen/OneWire
http://bit.ly/2lOYO2j

Because you can attach multiple sensors to a single GPIO pin, the getTempCByIndex
function takes the number of the sensor that you wish to use (starting at 0). If you
have multiple sensors you will have to use trial and error to identify which is which.

Raspberry Pi
Raspbian has support for the 1-wire interface used by the DS18B20 but you have to
enable it by editing the file /boot/config.txt and adding the following line to the end of
the file. Then reboot your Raspberry Pi for the change to take effect.

dtoverlay=w1-gpio

The program for this is called ch_12_ds18b20.py and can be found with the down‐
loads for the book (see Recipe 10.4):

import glob, time

base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'

def read_temp_raw():
 f = open(device_file, 'r')
 lines = f.readlines()
 f.close()
 return lines

def read_temp():
 lines = read_temp_raw()
 while lines[0].strip()[-3:] != 'YES':
 time.sleep(0.2)
 lines = read_temp_raw()
 equals_pos = lines[1].find('t=')
 if equals_pos != -1:
 temp_string = lines[1][equals_pos+2:]
 temp_c = float(temp_string) / 1000.0
 return temp_c

while True:
 print(read_temp())
 time.sleep(1)

As with the Arduino version of this program, the sensor to be read is accessed by
position in the line:

device_folder = glob.glob(base_dir + '28*')[0]

The interface to the DS18B20 uses a file-like structure. The file interface will always
be in the folder /sys/bus/w1/devices/ and the name of the file path will start with 28,
but the rest of the file path will be different for each sensor.

216 | Chapter 12: Sensors

The code assumes that there will only be one sensor, and finds the first folder starting
with 28. To use multiple sensors, use different index values inside the square brackets.

Within that folder will be a file called w1_slave, which is opened and read to find the
temperature.

The sensor actually returns strings of text like this:

81 01 4b 46 7f ff 0f 10 71 : crc=71 YES
81 01 4b 46 7f ff 0f 10 71 t=24062

The code extracts the temperature part of this message. This appears after t= and is
the temperature in one-thousandths of a degree Celsius.

The read_temp function calculates the temperature in degrees Celsius and returns it.

Discussion
If you want to attach multiple sensors (up to 255) you can wire them up as shown in
Figure 12-19. Only the one pull-up resistor is needed, and because the sensor is digi‐
tal and at a low data transmission rate, you can attach sensors to long leads with no
effect on the accuracy of the reading.

Figure 12-19. Using More than One DS18B20 Temperature Sensor

If you would rather have just two wires running to your DS18B20, you can use the
device’s special parasitic power feature. In essence, it harvests energy from the data
line, storing it temporarily in capacitors inside the IC. In parctical terms, the 3-wire
method will allow you to use longer wires to your sensor and will be more reliable,
but see the IC’s datasheet if you wish to use this mode.

If you plan to deploy your sensor somewhere wet, use encapsulated DS18B20 sensors
that are enclosed in a waterproof case that can be found on eBay.

12.11 Measure Temperature with a Digital IC | 217

See Also
The DS18B20 datasheet can be found here: http://bit.ly/2mTPyuu

To measure temperature with a thermistor, see Recipe 12.7 and Recipe 12.8.

To measure temperature with the TMP36 analog temperature-sensing IC, see Recipe
12.10.

12.12 Measure Humidity
Problem
You want to take humidity readings using an Arduino or Raspberry Pi.

Solution
Use a DHT11 humidity and temperature sensor, which has a serial output that does
not really conform to any bus standard like 1-wire, I2C, or SPI. However, libraries for
both Arduino and Raspberry Pi are available for it.

Figure 12-20 shows how it should be connected to an Arduino. When used with a
Raspberry Pi, the pin labeled VDD (voltage drain drain) should be connected to 3.3V
and the DATA pin to GPIO 4.

Figure 12-20. Connecting a DHT11 to an Arduino Uno

When connecting to a Raspberry Pi, use the 3.3V power connector not the 5V one
and connect the data pin of the DHT11 to GPIO4.

Arduino Software
The Arduino sketch can be found with the downloads for the book (Recipe 10.2) and
is called ch_12_dht11. The sketch requires the Arduino SimpleDHT library to be

218 | Chapter 12: Sensors

http://bit.ly/2mTPyuu

installed. You can do this from the Arduino Library Manager by using the option
Sketch→Include Library→Manage Libraries, searching for SimpleDHT, and then
clicking the Install button next to the library.

#include <SimpleDHT.h>

const int pinDHT11 = 2;
SimpleDHT11 dht11;

void setup() {
 Serial.begin(9600);
}

void loop() {
 byte temp;
 byte humidity;
 dht11.read(pinDHT11, &temp, &humidity, NULL);

 Serial.print(temp); Serial.print(" C, ");
 Serial.print(humidity); Serial.println(" %");

 delay(1000);
}

The call to dht11.read is a little unusual because it passes the variables temp and
humidity with an & in front of them to indicate that they can be changed within the
read function. In this way, after the read function has finished executing, temp and
humidity will have updated values.

Raspberry Pi Software
The Raspberry Pi code for this sensor requires an Adafruit library to be installed
using the following commands:

$ git clone https://github.com/adafruit/Adafruit_Python_DHT.git
$ cd Adafruit_Python_DHT
$ sudo python setup.py install

The program itself can be found with the downloads for the book (Recipe 10.4) and is
called ch_12_dht11.py:

import time, Adafruit_DHT

sensor_pin = 4
sensor_type = Adafruit_DHT.DHT11

while True:
 humidity, temp = Adafruit_DHT.read_retry(sensor_type, sensor_pin)
 print(str(temp) + " C " + str(humidity) + " %")
 time.sleep(1)

12.12 Measure Humidity | 219

Discussion
The DHT11 is the cheapest and most common series of similar sensors with different
accuracies. For better quality results use the DHT22.

See Also
Other recipes for measuring temperature are Recipe 12.7, Recipe 12.8, Recipe 12.10,
and Recipe 12.11.

12.13 Measure Distance
Problem
You want to measure the distance from an object to a sensor.

Solution
For distances between 4 inches (10cm) and 6 feet (2m) use an HC-SR04 ultrasonic
rangefinder module.

Figure 12-21 shows how the rangefinder is connected to an Arduino. Interfacing to it
requires one pin of the Arduino to act as a digital output (connected to TRIG) and
one as a digital input (connected to ECHO).

Figure 12-21. Connecting an HC-SR04 Rangefinder to an Arduino

The TRIG pin causes the HC-SR04 to emit a pulse of ultrasound at 40kHz and the
ECHO pin goes high when the reflected sound wave is received. The time taken for
this to happen is an indication of the distance from the sensor to the object.

To connect the rangefinder to a Raspberry Pi, the output voltage of the ECHO pin of
the rangefinder needs to be reduced to 3.3V. This can be done with a simple level

220 | Chapter 12: Sensors

converter using a pair of resistors as a voltage divider. The schematic for this is shown
in Figure 12-22.

Figure 12-22. Connecting an HC-SR04 Rangefinder to a Raspberry Pi

For more information on level conversion, see Recipe 10.17.

Arduino Software
An Arduino sketch (ch_12_rangefinder) for rangefinding can be found with the
downloads for the book (see Recipe 10.2):

const int trigPin = 9;
const int echoPin = 10;

void setup()
{
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 Serial.begin(9600);
}

void loop()
{
 float cm = takeSounding();
 Serial.print(int(cm));
 Serial.print(" cm ");
 int inches = int(cm / 2.5);
 Serial.print(inches);
 Serial.println(" inches");
 delay(500);
}

float takeSounding()
{
 digitalWrite(trigPin, HIGH);

12.13 Measure Distance | 221

 delayMicroseconds(10); // 10us trigger pulse
 digitalWrite(trigPin, LOW);
 delayMicroseconds(200); // ingore echos while sending 200us
 long duration = pulseIn(echoPin, HIGH, 100000) + 200;
 float distance = duration / 29.0 / 2.0;
 return distance;
}

All the action takes place in the takeSounding function. First, a 10µs pulse is sent to
the TRIG pin of the rangefinder resulting in a burst of eight cycles of 40kHz ultra‐
sound. The 200µs delay allows time for this burst to complete before measuring the
time taken until an echo is received.

The distance is calculated using the speed of sound (29cm/µs.) The value is divided
by 2 because the time taken is for both the outward and return journey of the sound
signal.

Raspberry Pi Software
The Raspberry Pi program can be found in the file ch_12_rangefinder.py with the
downloads for the book (see Recipe 10.4):

import RPi.GPIO as GPIO
import time

trigger_pin = 18
echo_pin = 23 # USE LEVEL CONVERTER 5V->3.3V

GPIO.setmode(GPIO.BCM)
GPIO.setup(trigger_pin, GPIO.OUT)
GPIO.setup(echo_pin, GPIO.IN)

def time_to_echo(timeout):
 t0 = time.time()
 while GPIO.input(echo_pin) == False and time.time() < (t0 + timeout):
 pass
 t0 = time.time()
 while GPIO.input(echo_pin) == True and time.time() < (t0 + timeout):
 pass
 return time.time() - t0

def get_distance():
 GPIO.output(trigger_pin, True)
 time.sleep(0.00001) # 10us
 GPIO.output(trigger_pin, False)
 time.sleep(0.0002) # 200us
 pulse_len = time_to_echo(1)
 distance_cm = pulse_len / 0.000058
 distance_in = distance_cm / 2.5
 return (distance_cm, distance_in)

222 | Chapter 12: Sensors

while True:
 print("cm=%f\tinches=%f" % get_distance())
 time.sleep(1)

Discussion
The HC-SR04 rangefinders are not particularly accurate, especially when used with a
Raspberry Pi, where the operating system will sometimes increase the timing read‐
ings for the echo.

Another unwanted influence on the readings comes from variations in the speed of
sound. This changes a little both with temperature and humidity.

See Also
The datasheet for the HC-SR04 module can be found here: http://bit.ly/2mTOPtn.

12.13 Measure Distance | 223

http://bit.ly/2mTOPtn

CHAPTER 13

Motors

13.0 Introduction
This chapter looks at various types of motors and how both their speed and direction
can be controlled. This involves the electronics of controlling fairly high load currents
as well as the software needed. This chapter will cover examples for Arduino and
Raspberry Pi.

When people talk of motors, what tends to spring to mind are the small DC motors
that you might find in a battery-powered toy car. DC motors are common and often
combined with a gearbox to reduce their high speed of rotation into a single unit
called a gearmotor.

Stepper motors operate on a different principle and are found in printers of all sorts
including 3D printers as they can be advanced in small steps (typically 1/200 of a rev‐
olution or more).

Servomotors fit a different niche, allowing accurate positioning of their “arm” in a
restricted range of angles (about 180°). Servomotors are often found controlling the
steering of a remote-control car or the control surfaces of a remote-control plane or
helicopter.

All of these types of motors are available in various sizes to meet the power require‐
ments of different applications. Whatever the size, controlling such motors follows
the same basic principles.

225

13.1 Switch DC Motors On and Off
Problem
You want to control a DC motor using a small control voltage—typically from a
GPIO pin.

Solution
Use a transistor switch, but add a snubbing diode as shown in Figure 13-1. This is
based on Recipe 11.1, which is fine for a small DC motor. For higher currents use a
power MOSFET as described in Recipe 11.3.

Figure 13-1. Schematic for Switching a DC Motor Alongside a 6V DC Motor

Discussion
The diode D1 prevents the transistor from being damaged. A “snubbing” diode like
this should always be used to protect a switching transistor from excessive reverse
voltage that occurs when the inductive load of the motor releases stored energy as a
pulse of voltage in the opposite polarity to that in which it was driven. This reverse
voltage is called “back-emf.”

It is not usually necessary to use a snubbing diode with a power MOSFET, because
these devices have built-in diodes to prevent damage from electrostatic discharge,
which will also protect against voltage spikes. They are (at least for relatively modest
motors) sufficient to protect the transistor. However, adding a diode as you would
with a BJT is the safest thing to do.

If you want to wire up the circuit of Figure 13-1, you can use the test programs in
Recipe 11.6 and Recipe 11.7 to control a motor from an Arduino or Raspberry Pi.

226 | Chapter 13: Motors

See Also
Many of the techniques described in Chapter 11 can be used to switch a motor.

To control the speed of a motor, see Recipe 13.2.

13.2 Measure the Speed of a DC Motor
Problem
You want to measure the speed of a DC motor.

Solution
Using a transistor switch and PWM to adjust the speed of the motor, measure the
motor’s speed using an optical detector and slotted wheel attached to the shaft of the
motor.

You can use the schematic in Figure 13-2 and pulse the GPIO control pin with PWM
as described in Recipe 10.13 and Recipe 10.14.

Discussion
Using PWM to control a motor actually controls the power supplied to the motor
rather than its speed, but assuming the motor’s load remains constant, these amount
to the same thing.

Measuring the motor speed requires a sensor that does not interfere with the rotation
of the motor. One way to do this is to use an optical sensor like the prebuilt model
shown in Figure 13-2 along with a laser-cut disk that has slots in it. As the disk rotates
it alternately blocks and allows light to pass, resulting in a series of pulses that can be
used to determine both the speed of the motor and the number of rotations it has
made.

The optical sensor includes a built-in comparator and has an “open collector” (Recipe
11.11) output that requires a 1kΩ pull-up resistor to 5V. These sensors are readily
available from eBay for a few dollars.

The motor-control circuit uses a MOSFET in the circuit described in Recipe 11.3.

The sketch ch_13_motor_speed_feedback (see Recipe 10.2) reports the speed of the
motor in RPM (revolutions per minute) once every second in the Serial Monitor. It
also allows you to send a PWM value of 0 to 255 to control the speed of the motor.

13.2 Measure the Speed of a DC Motor | 227

Figure 13-2. Measuring Motor Speed

Make sure that the Line endings drop-down list of the Serial Monitor is set to “No
line ending.”

const int outputPin = 11;
const int sensePin = 2;

const int slotsPerRev = 20;
const long updatePeriod = 1000L; // ms

long lastUpdateTime = 0;
long pulseCount = 0;

float rpm = 0;

void setup()
{
 pinMode(outputPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter speed 0 to 255");
 attachInterrupt(digitalPinToInterrupt(sensePin), incPulseCount, RISING);
}

void loop()
{
 if (Serial.available())
 {
 int setSpeed = Serial.parseInt();
 analogWrite(outputPin, setSpeed);
 }
 updateRPM();
}

void incPulseCount()
{

228 | Chapter 13: Motors

 pulseCount ++;
}

void updateRPM()
{
 long now = millis();
 if (now > lastUpdateTime + updatePeriod)
 {
 lastUpdateTime = now;
 rpm = float(pulseCount) * 60000.0 / (20.0 * updatePeriod);
 pulseCount = 0;
 Serial.println(rpm);
 }
}

An interrupt is used so that every time the sensePin goes from LOW to HIGH the
function incPulseCount is called that increments the value of pulseCount.

The function updateRPM will use pulseCount to calculate the RPM once per second
before resetting pulseCount to 0.

See Also
To just turn a motor on and off, see Recipe 13.1, and to control the direction of a DC
motor, see Recipe 13.3.

13.3 Control the Direction of a DC Motor
Problem
You want to be able to control the direction in which a DC motor turns.

Solution
Use an H-bridge circuit that consists of two push-pull drivers. To keep the number of
components low, this is normally accomplished using an H-bridge IC. Figure 13-3
shows the schematic for using the popular L293D motor controller with an Arduino
to control two DC motors independently.

The L293D has separate voltage supplies for the ICs logic (VCC1) and the motor
(VCC2). This allows the motor to operate at a different voltage than the logic and also
reduces the problem of electrical noise caused by the motor disrupting the logic.

Speed control of the motors is accomplished by using a PWM signal to drive the
1,2EN and 3,4EN pins that enable the push-pull drivers in pairs. The direction of one
motor is controlled by the L293D pins 1A and 2A and the second motor by 3A and
4A. Table 13-1 shows the four possible states of motor drive for the control pins 1A
and 2A.

13.3 Control the Direction of a DC Motor | 229

Figure 13-3. Using an L293D IC to Control Two Motors

Table 13-1. Motor Control Pin Logic

1A 2A Motor M1

LOW LOW Off

LOW HIGH Clockwise

HIGH LOW Counter-clockwise

HIGH HIGH Fast-stop

Arduino software
To control the motors, three Arduino pins are needed for each motor. One to control
the speed and two for the A and B control pins for the direction that are connected to
the 1A and 2A control pins for one motor and the 3A and 4A pins of the L293 for
the other.

const int motor1SpeedPin = 5;
const int motor2SpeedPin = 6;

const int motor1DirAPin = 2;
const int motor1DirBPin = 3;
const int motor2DirAPin = 4;
const int motor2DirBPin = 7;

void setup()
{
 pinMode(motor1SpeedPin, OUTPUT);
 pinMode(motor2SpeedPin, OUTPUT);
 pinMode(motor1DirAPin, OUTPUT);

230 | Chapter 13: Motors

 pinMode(motor1DirBPin, OUTPUT);
 pinMode(motor2DirAPin, OUTPUT);
 pinMode(motor2DirBPin, OUTPUT);
 Serial.begin(9600);
 // M1 full speed clockwise
 analogWrite(motor1SpeedPin, 255);
 digitalWrite(motor1DirAPin, LOW);
 digitalWrite(motor1DirBPin, HIGH);
 // M2 half speed counter-clockwise
 analogWrite(motor2SpeedPin, 127);
 digitalWrite(motor2DirAPin, HIGH);
 digitalWrite(motor2DirBPin, LOW);
}

void loop()
{
}

The code sets all the control pins to be outputs and then sets one motor to go at full
speed in one direction and the other at half speed in the other. Try experimenting
with this code to make the motors behave differently.

Raspberry Pi software
The 3.3V digital outputs of a Raspberry Pi will work just fine connected to the
L293D, but the logic supply to the L293D must be 4.5V or more, so the 5V pin of the
Raspberry Pi GPIO connector should be used. Table 13-2 shows the connections
between Raspberry Pi and L293D.

Table 13-2. Connecting an L293D IC to a Raspberry Pi

Raspberry Pi GPIO Pin L293D Pin Name L293 Pin Number(s) Function

5V VCC1 16 Logic supply

GND GND 12 Ground

GPIO18 1,2EN 1 M1 speed

GPIO23 3,4EN 9 M2 speed

GPIO24 1A 2 M1 direction A

GPIO17 2A 7 M1 direction B

GPIO27 3A 10 M2 direction A

GPIO22 4A 15 M2 direction B

The following Python programs (ch_13_l293d.py) will set M1 to operate at full speed
in one direction and M2 at half-speed in the other direction:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

13.3 Control the Direction of a DC Motor | 231

Define pins
motor_1_speed_pin = 18
motor_2_speed_pin = 23
motor_1_dir_A_pin = 24
motor_1_dir_B_pin = 17
motor_2_dir_A_pin = 27
motor_2_dir_B_pin = 22

Set pin modes
GPIO.setup(motor_1_speed_pin, GPIO.OUT)
GPIO.setup(motor_2_speed_pin, GPIO.OUT)
GPIO.setup(motor_1_dir_A_pin, GPIO.OUT)
GPIO.setup(motor_1_dir_B_pin, GPIO.OUT)
GPIO.setup(motor_2_dir_A_pin, GPIO.OUT)
GPIO.setup(motor_2_dir_B_pin, GPIO.OUT)

Start PWM
motor_1_pwm = GPIO.PWM(motor_1_speed_pin, 500)
motor_1_pwm.start(0)
motor_2_pwm = GPIO.PWM(motor_2_speed_pin, 500)
motor_2_pwm.start(0)

Set one motor to full speed
motor_1_pwm.ChangeDutyCycle(100)
GPIO.output(motor_1_dir_A_pin, False)
GPIO.output(motor_1_dir_B_pin, True)

Second motor to half speed
motor_2_pwm.ChangeDutyCycle(50)
GPIO.output(motor_2_dir_A_pin, True)
GPIO.output(motor_2_dir_B_pin, False)

input("Enter '0' to stop ")
print("Cleaning up")
GPIO.cleanup()

The code follows the same pattern as its Arduino counterpart. First, the pins are set
to be outputs and then two PWM channels are defined to control the motor speeds.
Finally, one motor is set to full speed in one direction and the other to half-speed in
the other direction.

The function GPIO.cleanup() sets all the pins to be inputs just before the program
exits to stop both motors.

Discussion
Figure 13-4 shows a “schematic” for what is going on with an H-bridge driver. Don’t
try and build this schematic; if you do, prepare for the possibility of destroying some
of the transistors if Q1 and Q2 or Q3 and Q4 are turned on at the same time. Also,

232 | Chapter 13: Motors

this circuit will only stand a chance of working if the motor voltage is almost the
same as the logic voltage of the control pins (see Recipe 11.4).

Figure 13-4. A Crude H-Bridge Driver

The idea of the circuit is that the control pin A makes Q1 conduct if it is LOW and
Q2 conduct if it is HIGH. Similarly control pin B makes Q3 conduct if it is low and
Q4 conduct if pin B is HIGH.

By setting A and B, you can control the direction of flow of current through the
motor according to Table 13-1.

See Also
For more information on push-pull (half-bridge) drivers, see Recipe 11.8.

13.4 Setting Motors to Precise Positions
Problem
You want to move a motor to a specific position from an Arduino or Raspberry Pi.

Solution
A servomotor offers the solution to this problem. Wire the servomotor up as shown
in Figure 13-5.

Figure 13-5. Connecting a Servomotor to a GPIO Pin

13.4 Setting Motors to Precise Positions | 233

Generally servomotors will use a separate power supply from the supply used by the
Arduino or Raspberry Pi, as the large load current as the motor starts may well drop
the supply voltage enough to reset the controlling device. However, for a small lightly
loaded servomotor, you may get away with using the same supply for both.

The resistor R1 is there to protect the GPIO pin, but is not strictly necessary as most
servomotors draw very little current from the control pin. But if you do not have the
datasheet for the servo you are using then R1 is a sensible precaution.

Figure 13-6 shows a small 9g hobby servo. The connector to the servo is fairly stand‐
ardized, but you should also check the servomotor’s datasheet.

Figure 13-6. A 9g Servomotor

The red lead is the positive supply to the motor, the brown lead the ground connec‐
tion, and the orange lead the control signal.

The control signal will normally be fine with a 3.3V logic, but if the datasheet for the
servomotor indicates that this needs to be higher, use a level converter (Recipe 10.17).

Arduino software
The following example code (ch_13_servo) in the downloads for the book (see Recipe
10.2) assumes that the control pin of a servo is connected to pin 9 of an Arduino Uno.

When you open the Arduino Serial Monitor you will be prompted to enter an angle
for the servoarm:

#include <Servo.h>

const int servoPin = 9;

Servo servo;

234 | Chapter 13: Motors

void setup() {
void setup() {
 servo.attach(servoPin);
 servo.write(90);
 Serial.begin(9600);
 Serial.println("Angle in degrees");
}

void loop() {
 if (Serial.available()) {
 int angle = Serial.parseInt();
 servo.write(angle);
 }
}

Make sure that you have Line endings drop-down on the Serial Monitor set to “No
line ending.”

The servo.write method of the servo library sets the servo arm to an angle in
degrees between 0 and 180.

Raspberry Pi software
The Raspberry Pi equivalent of the Arduino sketch is ch_13_servo.py in the book
downloads (see Recipe 10.4):

import RPi.GPIO as GPIO
import time

servo_pin = 18

Tweak these values to get full range of servo movement
deg_0_pulse = 0.5 # ms
deg_180_pulse = 2.5 # ms
f = 50.0 #50Hz = 20ms between pulses

Do some calculations on the pulse width parameters
period = 1000 / f # 20ms
k = 100 / period # duty 0..100 over 20ms
deg_0_duty = deg_0_pulse * k
pulse_range = deg_180_pulse - deg_0_pulse
duty_range = pulse_range * k

GPIO.setmode(GPIO.BCM)
GPIO.setup(servo_pin, GPIO.OUT)
pwm = GPIO.PWM(servo_pin, f)
pwm.start(0)

def set_angle(angle):
 duty = deg_0_duty + (angle / 180.0) * duty_range
 pwm.ChangeDutyCycle(duty)

13.4 Setting Motors to Precise Positions | 235

try:
 while True:
 angle = input("Angle (0 to 180): ")
 set_angle(angle)
finally:
 print("Cleaning up")
 GPIO.cleanup()

The set_angle function makes use of the variables deg_0_duty and duty_range,
which are calculated once at the start of the program to calculate the duty cycle that
will generate a pulse of the right length for the specified angle.

Servomotors rarely have exactly the same range of movement, so this program and its
Arduino equivalent are a great way to find the range of angles that your servomotor
can reach.

Discussion
Figure 13-7 shows how the pulses arriving at a servomotor’s control pin alter the
angle of the servomotor’s arm.

Figure 13-7. Pulse-Length Controls Position of Arm on a Servomotor

The servomotor expects a pulse every 20ms to maintain its position. The length of
that pulse determines the position of the servomotor’s arm, which can normally travel
through about 180°. A short pulse of between 0.5 and 1ms will position the arm at

236 | Chapter 13: Motors

one end of its travel. A pulse of 1.5ms will position the servomotor’s arm in the center
position and a long pulse of up to 2.5ms at its furthest travel.

Connect Lots of Servos

If you have a lot of servomotors to connect to an Arduino or a
Raspberry Pi, then it can help to use a servomotor interface board
such as the ServoSix board (Figure 13-8).

Figure 13-8. The MonkMakes ServoSix Board

Using the Python GPIO library to generate the pulses can result in some jitter in the
movement of the servoarm. This is due to inaccuracies of the pulse timing as Rasp‐
bian tries to do several things at once.

This can be improved by using the ServoBlaster service that configures certain GPIO
pins exclusively for servo use or the ServoSix library that is built on ServoBlaster, but
it just configures the pins for servo use while the controlling program is running.

Another alternative is to devolve the control of the servos entirely to hardware such
as the Adafruit 16-channel servoboard, which is then sent control messages from the
Raspberry Pi.

13.4 Setting Motors to Precise Positions | 237

See Also
For more information on the ServoBlaster Python library for Raspberry Pi, see
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster.

You can find the ServoSix library at https://github.com/simonmonk/servosix and the
ServoSix connection board at https://www.monkmakes.com/servosix/.

To use the Adafruit servo interface board, see https://www.adafruit.com/product/815.

13.5 Move a Motor a Precise Number of Steps
Problem
You want to move a motor a precise number of degrees or steps from one position to
another using an Arduino or Raspberry Pi.

Solution
A bipolar stepper motor can do what you need. Use a dual H-bridge IC such as the
L293D used in Recipe 13.3 to drive the two coils of a bipolar stepper motor.
Figure 13-9 shows the schematic diagram for this using an Arduino Uno and
Figure 13-10 shows the diagram for a Raspberry Pi.

Figure 13-9. Controlling a Bipolar Stepper Motor Using an Arduino Uno

238 | Chapter 13: Motors

https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/simonmonk/servosix
https://www.monkmakes.com/servosix/
https://www.adafruit.com/product/815

Figure 13-10. Controlling a Bipolar Stepper Motor Using a Raspberry Pi

A push-pull driver is needed for each of the two coils of the stepper motor. The
enable pins of the L293D are both tied to a single GPIO pin. Generally the enable
pins will be permanently enabled, although they could be used with a high-frequency
PWM signal if the stepper motor voltage is below the power-supply voltage.

Arduino software
You can find an Arduino sketch called ch_13_bi_stepper in the downloads for the
book (Recipe 10.2):

#include <Stepper.h>

const int in1Pin = 2;
const int in2Pin = 3;
const int in3Pin = 4;
const int in4Pin = 7;
const int enablePin = 5;

Stepper motor(200, in1Pin, in2Pin, in3Pin, in4Pin);

void setup() {
 pinMode(in1Pin, OUTPUT);
 pinMode(in2Pin, OUTPUT);
 pinMode(in3Pin, OUTPUT);
 pinMode(in4Pin, OUTPUT);
 pinMode(enablePin, OUTPUT);
 digitalWrite(enablePin, HIGH);
 Serial.begin(9600);

13.5 Move a Motor a Precise Number of Steps | 239

 Serial.println("Command letter followed by number");
 Serial.println("p20 - set the motor speed to 20");
 Serial.println("f100 - forward 100 steps");
 Serial.println("r100 - reverse 100 steps");
 motor.setSpeed(20);
}

void loop() {
 if (Serial.available()) {
 char command = Serial.read();
 int param = Serial.parseInt();
 if (command == 'p') {
 motor.setSpeed(param);
 }
 else if (command == 'f') {
 motor.step(param);
 }
 else if (command == 'r') {
 motor.step(-param);
 }
 }
}

The sketch uses the Stepper library that is included with the Arduino IDE. The
library requires you to specify the number of steps as the first parameter in the fol‐
lowing line:

Stepper motor(200, in1Pin, in2Pin, in3Pin, in4Pin);

To try out the program, open the Serial Monitor and send commands such as f100,
where f is the direction (forward or reverse) and 100 is the number of steps.

Raspberry Pi software
The Raspberry Pi software for driving a bipolar stepper motor can be found in the file
ch_13_bi_stepper.py. To download the code for the book see Recipe 10.4.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

in_1_pin = 18
in_2_pin = 23
in_3_pin = 24
in_4_pin = 25
en_pin = 22

GPIO.setup(in_1_pin, GPIO.OUT)
GPIO.setup(in_2_pin, GPIO.OUT)
GPIO.setup(in_3_pin, GPIO.OUT)

240 | Chapter 13: Motors

GPIO.setup(in_4_pin, GPIO.OUT)
GPIO.setup(en_pin, GPIO.OUT)
GPIO.output(en_pin, True)

period = 0.02

def step_forward(steps, period):
 for i in range(0, steps):
 set_coils(1, 0, 0, 1)
 time.sleep(period)
 set_coils(1, 0, 1, 0)
 time.sleep(period)
 set_coils(0, 1, 1, 0)
 time.sleep(period)
 set_coils(0, 1, 0, 1)
 time.sleep(period)
def step_reverse(steps, period):
 for i in range(0, steps):
 set_coils(0, 1, 0, 1)
 time.sleep(period)
 set_coils(0, 1, 1, 0)
 time.sleep(period)
 set_coils(1, 0, 1, 0)
 time.sleep(period)
 set_coils(1, 0, 0, 1)
 time.sleep(period)

def set_coils(in1, in2, in3, in4):
 GPIO.output(in_1_pin, in1)
 GPIO.output(in_2_pin, in2)
 GPIO.output(in_3_pin, in3)
 GPIO.output(in_4_pin, in4)

try:
 print('Command letter followed by number');
 print('p20 - set the inter-step period to 20ms (control speed)');
 print('f100 - forward 100 steps');
 print('r100 - reverse 100 steps');

 while True:
 command = input('Enter command: ')
 parameter_str = command[1:] # from char 1 to end
 parameter = int(parameter_str)
 if command[0] == 'p':
 period = parameter / 1000.0
 elif command[0] == 'f':
 step_forward(parameter, period)
 elif command[0] == 'r':
 step_reverse(parameter, period)

13.5 Move a Motor a Precise Number of Steps | 241

finally:
 print('Cleaning up')
 GPIO.cleanup()

This code does not use a library, but directly sets the outputs of the push-pull drivers
to activate the coils in the right sequence to move the motor forward or backward for
the specified number of steps.

Using Python 2?

The preceding code is written for Python 3. If you are running the
program as Python 2, then you will need to change the line:

command = input('Enter command: ')

to:
command = raw_input('Enter command: ')

The Python programs in this book are designed to work with
Python 2 or Python 3, but the input/raw_input issue is one source
of incompatibility between the Python versions that is difficult to
code around.

Discussion
Unlike servomotors, stepper motors can rotate continuously—they just do it one step
at a time. Typically a stepper motor will have a few tens to a few hundred steps to one
full rotation. Moving the stepper motor from one step position to the next involves
activating its two coils in a certain pattern.

The L293D lends itself well to experimenting with stepper motors on a breadboard.
Figure 13-11 shows an Arduino wired up from the schematic of Figure 13-9. Note
that the GND connections are connected inside the chip, so not all ground connec‐
tions in the schematic need to be made.

See Also
The stepper motor used to test out the preceding examples is from Adafruit, where
you will also find a datasheet for the motor).

To use unipolar stepper motors (usually 5-lead), see Recipe 13.6.

242 | Chapter 13: Motors

https://www.adafruit.com/products/324

Figure 13-11. Using a Breadboard with an L293D

13.6 Choose a Simpler Stepper Motor
Problem
You want to use a unipolar (5-wire) stepper motor with an Arduino or Raspberry Pi.

Solution
Unipolar stepper motors are a little easier to use than their bipolar relatives discussed
in Recipe 13.6. They do not need a push-pull half-bridge driver, but can be controlled
using a Darlington array chip like the ULN2803. Figure 13-12 shows the schematic
for using this IC with an Arduino and Figure 13-13 for a Raspberry Pi.

13.6 Choose a Simpler Stepper Motor | 243

Figure 13-12. Using an ULN2803 to Control a Unipolar Stepper Motor (Arduino)

Figure 13-13. Using an ULN2803 to Control a Unipolar Stepper Motor (Raspberry Pi)

The ULN2803 contains eight open-collector Darlington transistors, each capable of
sinking about 500mA and so can be used to drive two unipolar stepper motors.

Arduino software
You can find an example Arduino sketch that uses the stepper library in
ch_13_uni_stepper with the downloads for the book (see Figure 10-2).

#include <Stepper.h>

const int in1Pin = 2;
const int in2Pin = 3;
const int in3Pin = 4;
const int in4Pin = 7;

Stepper motor(513, in1Pin, in2Pin, in3Pin, in4Pin);

void setup() {

244 | Chapter 13: Motors

 pinMode(in1Pin, OUTPUT);
 pinMode(in2Pin, OUTPUT);
 pinMode(in3Pin, OUTPUT);
 pinMode(in4Pin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Command letter followed by number");
 Serial.println("p20 - set the motor speed to 20");
 Serial.println("f100 - forward 100 steps");
 Serial.println("r100 - reverse 100 steps");
 motor.setSpeed(20);
}

void loop() {
 if (Serial.available()) {
 char command = Serial.read();
 int param = Serial.parseInt();
 if (command == 'p') {
 motor.setSpeed(param);
 }
 else if (command == 'f') {
 motor.step(param);
 }
 else if (command == 'r') {
 motor.step(-param);
 }
 }
}

The sketch is pretty much the same as that of Recipe 13.5, but in this case there is no
enable pin possible. See the sketch in Recipe 13.5 for a description of the code.

Raspberry Pi software
The Raspberry Pi version of the software can be found in the program
ch_13_uni_stepper.py. It is identical to that of Recipe 13.5 but with the driver-enable
feature removed:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

in_1_pin = 18
in_2_pin = 23
in_3_pin = 24
in_4_pin = 25

GPIO.setup(in_1_pin, GPIO.OUT)
GPIO.setup(in_2_pin, GPIO.OUT)
GPIO.setup(in_3_pin, GPIO.OUT)
GPIO.setup(in_4_pin, GPIO.OUT)

13.6 Choose a Simpler Stepper Motor | 245

period = 0.02

def step_forward(steps, period):
 for i in range(0, steps):
 set_coils(1, 0, 0, 1)
 time.sleep(period)
 set_coils(1, 0, 1, 0)
 time.sleep(period)
 set_coils(0, 1, 1, 0)
 time.sleep(period)
 set_coils(0, 1, 0, 1)
 time.sleep(period)
def step_reverse(steps, period):
 for i in range(0, steps):
 set_coils(0, 1, 0, 1)
 time.sleep(period)
 set_coils(0, 1, 1, 0)
 time.sleep(period)
 set_coils(1, 0, 1, 0)
 time.sleep(period)
 set_coils(1, 0, 0, 1)
 time.sleep(period)

def set_coils(in1, in2, in3, in4):
 GPIO.output(in_1_pin, in1)
 GPIO.output(in_2_pin, in2)
 GPIO.output(in_3_pin, in3)
 GPIO.output(in_4_pin, in4)

try:
 print('Command letter followed by number');
 print('p20 - set the inter-step period to 20ms (control speed)');
 print('f100 - forward 100 steps');
 print('r100 - reverse 100 steps');

 while True:
 command = raw_input('Enter command: ')
 parameter_str = command[1:] # from char 1 to end
 parameter = int(parameter_str)
 if command[0] == 'p':
 period = parameter / 1000.0
 elif command[0] == 'f':
 step_forward(parameter, period)
 elif command[0] == 'r':
 step_reverse(parameter, period)

finally:
 print('Cleaning up')
 GPIO.cleanup()

246 | Chapter 13: Motors

Discussion
Unipolar stepper motors are available with built-in reduction gearboxes that make
great motors for making small roving robots.

See Also
The unipolar stepper motor that I used to validate these recipes is this Adafruit
model: https://www.adafruit.com/product/858.

To use bipolar stepper motors, see Recipe 13.6.

The ULN2803 datasheet can be found here: http://www.ti.com/lit/ds/symlink/
uln2803a.pdf.

13.6 Choose a Simpler Stepper Motor | 247

https://www.adafruit.com/product/858
http://www.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.ti.com/lit/ds/symlink/uln2803a.pdf

CHAPTER 14

LEDs and Displays

14.0 Introduction
LEDs can be used both for illumination and as indicators. They can also be arranged
as 7-segment displays or as tiny pixels in an OLED (organic LED) display.

This chapter contains recipes relating to powering and controlling LEDs as well as for
using a display with an Arduino or Raspberry Pi.

14.1 Connect Standard LEDs
Problem
You want to connect a standard low-power LED to a GPIO pin, but you are not sure
what value of series resistor to use.

Solution
Back in Recipe 4.4 you saw how an LED needs a series resistor to prevent too much
current from flowing. Too much current will shorten the life of an LED, but more
importantly, it may damage or destroy the Arduino or Raspberry Pi GPIO pin that is
controlling the LED.

Wire up your LED to a GPIO pin as shown in Figure 14-1 and then use Table 14-1 to
select a value for the series resistor.

249

Figure 14-1. Connecting an LED to a GPIO Pin

Table 14-1. LED Series Resistor Values

 Infrared Red Orange/Yellow/Green Blue/White Violet UV

Vf 1.2-1.6V 1.6-2V 2-2.2V 2.5-3.7V 2.7-4V 3.1-4.4V

3.3V GPIO 3mA 1kΩ 680Ω 470Ω 270Ω 220Ω 68Ω

3.3V GPIO 16mA 150Ω 120Ω 82Ω 56Ω 39Ω 15Ω

5V GPIO 20mA 220Ω 180Ω 150Ω 150Ω 120Ω 100Ω

Discussion
In practice, nearly all LEDs will illuminate to some degree even from 3.3V with a 1kΩ
resistor limiting the current. So, as an even broader rule of thumb, if you don’t care
about optimizing the brightness of your LED then a 270Ω resistor is fine.

For optimum brightness find the datasheet for your LED and use the forward-voltage
Vf and maximum forward current If with the formula in Recipe 4.4 to calculate the
optimum value of resistor.

If you connect an LED as shown in Figure 14-1 you can test turning it on and off
using an Arduino and Raspberry Pi with Recipe 10.8 and Recipe 10.9.

Figure 14-2. A Raspberry Squid RGB LED

250 | Chapter 14: LEDs and Displays

A convenient thing to have around if you want to use LEDs with a Raspberry Pi is a
Raspberry Squid (Figure 14-2). This has series resistors for the red, green, and blue
LEDs built-in to the leads, so you can just plug it straight onto the GPIO connector of
a Raspberry Pi.

Identifying LED Pins
If you take a close look at a standard through-hole LED like the one shown in
Figure 14-3 you will see that one lead is longer than the other. The longer lead is the
anode should be at the more positive voltage so that the LED is forward-biased and
therefore lights.

Looking through the clear plastic enclosure of this LED, you should also be able to see
that the connections inside the LED are different shapes, one being much larger than
the other.

Finally, if any doubt remains, LEDs generally have one side with a flat edge that indi‐
cates the cathode (negative terminal).

Figure 14-3. A 5mm Through-hole LED

See Also
For more background on LEDs, see Recipe 4.4.

To make your own Raspberry Squid, see https://github.com/simonmonk/squid.

14.1 Connect Standard LEDs | 251

https://github.com/simonmonk/squid

14.2 Drive High-Power LEDs
Problem
You want to power a 2–5W LED using a constant current and be able to control the
LED’s brightness from the PWM GPIO signal on an Arduino or Raspberry Pi.

Solution
Modify Recipe 7.7 to add a control input for the LED driver as shown in Figure 14-4.

Figure 14-4. Constant-Current LED Control from Arduino or Raspberry Pi

When the GPIO pin is low, Q1 will be off and effectively takes no part in the circuit.
The LM317 then acts as a constant-current source where R2 sets the current as dis‐
cussed in Recipe 7.7 according to the formula:

I = 1 . 2
R2

So if you know what current you want to set, you can calculate the value of R2 using:

R2 = 1 . 2
I

Since R3 is very low compared to the input impedance of the Adjust pin of the
LM317, it can be ignored.

When the GPIO pin is taken above the gate-threshold voltage of Q1, Q1 will turn on,
pulling the Adjust pin low and reducing the regulated voltage to 0V.

252 | Chapter 14: LEDs and Displays

Discussion
The LM317 will get hot if the DC-input voltage is significantly higher than the for‐
ward voltage of the LED. In fact, the power it will turn into heat will be:

P = I f Vin − V f − 1 . 2

where If is the forward voltage of the LED, Vin is the input voltage, and Vf is the for‐
ward voltage of the LED.

R2 will generally be a low-value resistor that will produce heat with a power of:

P = 1 . 2 × I f

As an example, Figure 14-5 shows the circuit of Figure 14-4 supplying 120mA to a
high-power LED. For this, R2 is a 10Ω 1/4W resistor. The control pin is connected to
a GPIO pin of an Arduino.

Figure 14-5. Controlling a Constant-Current Source from an Arduino

Arduino software
You can turn the LED on and off using the sketch from Recipe 10.8 but on and off
will be swapped over because a HIGH at the GPIO pin will turn the LED off.

14.2 Drive High-Power LEDs | 253

You can also use PWM to control the LED brightness, but again, the logic is inverted,
so you will need to modify the following line in ch_10_analog_output from:

int brightness = Serial.parseInt();

to be:

int brightness = 255 - Serial.parseInt();

Raspberry Pi software
You can use the Python program from Recipe 10.9, but as with the equivalent Ardu‐
ino sketch the on/off logic will be inverted.

For brightness control, you will also need to modify the line:

duty = int(duty_s)

to be:

duty = 100 - int(duty_s)

See Also
The LM317 datasheet can be found here: http://www.ti.com/lit/ds/symlink/lm317.pdf.

14.3 Power Lots of LEDs
Problem
You want to power a whole load of LEDs at the same time.

Solution
Arrange columns of LEDs in series to match the supply voltage, with a current-
limiting resistor for each column. The example in Figure 14-6 shows how you could
power 20 LEDs with a forward voltage of 1.7V and a forward current of around
20mA from a 12V power supply.

In this case, five forward-biased LEDs in a column will drop a total of 8.5V, leaving
3.5V to be dropped across the resistor. Using Ohm’s Law, this means the resistor
should have a value of 175Ω so a standard value of 180Ω would lower the current just
slightly but enough.

While it’s tempting to reduce the number of resistors you need by putting more LEDs
in series, this can cause practical problems of overcurrent if the stated forward volt‐
age of the LEDs is not quite accurate. As a rule of thumb, I generally like to keep ¼ of
the supply voltage for the series resistor.

254 | Chapter 14: LEDs and Displays

http://www.ti.com/lit/ds/symlink/lm317.pdf

Figure 14-6. Powering Lots of LEDs

Discussion
The extreme version of this design is to power a long series of LEDs directly from
mains voltage. It works, but frankly this is just terrifying—don’t do it.

It’s tempting to consider just putting LEDs in series to share a series resistor as shown
in Figure 14-7.

Figure 14-7. An Incorrect Way of Powering LEDs

The problem with doing this is that if there are slight variations in the forward volt‐
age of each LED (which there will be) the LED with the smallest Vf will start conduct‐
ing first and immediately draw ALL the current from the resistor. This may well burn
out the LEDs one at a time.

See Also
For basic information on LEDs and series resistors, see Figure 14-1.

There is a nice online calculator that will do the series resistor calculations for you
here: http://led.linear1.org/led.wiz.

14.3 Power Lots of LEDs | 255

http://led.linear1.org/led.wiz

14.4 Switch Lots of LEDs at the Same Time
Problem
You have a big bank of LEDs (see Recipe 14.3) and you want to switch them all on
and off from an Arduino or Raspberry Pi.

Solution
Switching a big bank of LEDs is really no different from switching any sizeable load.
You can use Recipe 13.3 to do this.

For programs to turn the LEDs on and off, you can use Recipe 10.8 and Recipe 10.9.

Discussion
You can also use a PWM signal to control the brightness of a big bank of LEDs using
the programs found in Recipe 10.13 and Recipe 10.14.

See Also
See Chapter 11 for a whole load of recipes concerned with switching loads like this.

14.5 Multiplex Signals to 7-Segment Displays
Problem
You want to drive a multidigit 7-segment display from an Arduino or Raspberry Pi.

Solution
Use multiplexing—a technique that reduces the number of GPIO pins needed to light
lots of LEDs. Figure 14-8 shows how you can control a 4-digit LED display from an
Arduino Uno.

Each digit of the display has seven segments in a figure-8 arrangement. Each of these
segments is labeled A to G and is connected, inside the LED package, to all the seg‐
ments of the same name. In this display, all the cathodes of the segments for a partic‐
ular digit are connected together as a common cathode. The LED display has a pin
for each of these four common cathodes so that the software can enable each digit in
turn, set its segment pattern, and then move on to the next digit.

256 | Chapter 14: LEDs and Displays

Figure 14-8. Controlling a 4-digit LED Display from an Arduino

The sketch ch_14_7_seg_mux displays the numbers 1 to 4 on the display (see
Figure 14-9).

Figure 14-9. Multiplexing a 7-Segment Display on a Breadboard

14.5 Multiplex Signals to 7-Segment Displays | 257

The sketch can be found with the downloads for the book (see Recipe 10.2):

const int digitPins[] = {2, 3, 4, 5};
const int segPins[] = {6, 7, 8, 9, 10, 11, 12, 13};

// abcdefgD
const char num[] = { 0b11111100, // 0 abcdef
 0b00001100, // 1 ef
 0b11011010, // 2 ab de g
 0b10011110, // 3 a defg
 0b00101110, // 4 c efg
 0b10110110, // 5 a cd fg
 0b11110110, // 6 abcd fg
 0b00011100, // 7 def
 0b11111110, // 8 abcdefg
 0b10111110}; // 9 a cdefg

int digits[] = {1, 2, 3, 4};

void setup()
{
 for (int i = 0; i < 4; i++)
 {
 pinMode(digitPins[i], OUTPUT);
 }
 for (int i = 0; i < 8; i++)
 {
 pinMode(segPins[i], OUTPUT);
 }
}

void loop()
{
 refreshDisplay();
}

void refreshDisplay()
{
 for (int d = 0; d < 4; d++)
 {
 for (int seg=0; seg < 8; seg++)
 {
 digitalWrite(segPins[seg], LOW);
 }
 digitalWrite(digitPins[d], HIGH);
 for (int seg=0; seg < 8; seg++)
 {
 digitalWrite(segPins[seg], bitRead(num[digits[d]], 7-seg));
 }
 delay(1);
 digitalWrite(digitPins[d], LOW);
 }
}

258 | Chapter 14: LEDs and Displays

The digit and segment pins are contained in arrays. The setup function sets them all
as outputs.

Two other arrays are defined: num contains the bit patterns for the numbers 0 to 9. A 1
in the bit position means the segment should be lit for that value. The array digits
holds the numeric value to be displayed on each of the four positions.

Every time the refreshDisplay function is called, all four digits of the display will be
displayed and then the display blanked. This means that refreshDisplay must be
called as frequently as possible or the display may become flickery or dim. The func‐
tion has an outer loop that loops for each digit number d between 0 and 3. Inside this
loop, the segments are first turned off and then the control pin for the current digit
is enabled.

An inner loop then loops for each segment (seg) and determines whether the current
segment should be lit or not, based on the expression:

bitRead(num[digits[d]], 7-seg)

This first finds the current digit value and then looks up the bit pattern for that value.

Discussion
The critical thing about the preceding example code is that anything that you do
inside the loop function along with refreshDisplay must happen quickly, or the dis‐
play will start to flicker. The human eye will not see the flickering until refreshDis
play is called less frequently than 30 times a second, giving you a theoretical 30 milli‐
seconds (approximately) to do something else in loop. This is more than enough
time to check the state of digital inputs and perform other simple actions, but
remember—always keep loop as fast as possible.

Figure 14-9 shows that there is quite a lot of wiring involved in multiplexing the dis‐
play. The same hardware can be attached to the GPIO pins of a Raspberry Pi (at least
a 40-pin GPIO Raspberry Pi) but the nature of the operating system means that you
might find the refresh a little uneven. For a Raspberry Pi, it is probably better to use a
display module that has its own hardware such as the I2C LED display in Recipe 14.9.

See Also
To use an I2C 7-segment LED module, see Recipe 14.9.

14.6 Control Many LEDs
Problem
You want to control many LEDs with just a few GPIO pins.

14.6 Control Many LEDs | 259

Solution
Use a technique called Charlieplexing.

The name Charlieplexing comes from the inventor Charlie Allen of the company
Maxim, and the technique takes advantage of the feature of GPIO pins that allows
them to be changed from outputs to inputs while a program is running. When a pin
is changed to be an input, not enough current will flow through it to light an LED or
influence other pins connected to the LED that are set as outputs.

Figure 14-10 shows the schematic for controlling six LEDs with three pins.

Figure 14-10. Schematic for Charlieplexing Six LEDs

Looking at Figure 14-10, if you want to turn on LED1, you need to make pin A high
and B low. But to make sure that none of the other LEDs light, you need to set C to be
an input, so that no current can flow into or out of it. More accurately, to make sure
that not enough current to light an LED flows into or out of it.

For a small number of LEDs, you can test out Charlieplexing on a breadboard as
shown in Figure 14-11.

Figure 14-11. Charlieplexing on a Breadboard

260 | Chapter 14: LEDs and Displays

Arduino software
Connect the three control points on the breadboard to pins D5, D6, and D7 of your
Arduino (D6 to the middle control pin). You can then use the following sketch
(ch_14_charlieplexing) to try out Charlieplexing. You will find the sketch with the
downloads for the book (see Recipe 10.2):

const int pins[] = {5, 6, 7};

const int pinLEDstates[6][3] = {
 {1, 0, -1}, // LED 1
 {0, 1, -1}, // LED 2
 {-1, 1, 0}, // LED 3
 {-1, 0, 1}, // LED 4
 {1, -1, 0}, // LED 5
 {0, -1, 1} // LED 6
};

int ledState[6];

void setup()
{
 Serial.begin(9600);
 Serial.println("LED Number (0 to 5)");
}

void loop()
{
 if (Serial.available())
 {
 int led = Serial.parseInt();
 ledState[led] = ! ledState[led];
 }
 refresh();
}

void refresh()
{

 for (int led = 0; led < 6; led ++)
 {
 clearPins();
 if (ledState[led])
 {
 setPins(led);
 }
 else
 {
 clearPins();
 }
 delay(1);
 }

14.6 Control Many LEDs | 261

}

void setPins(int led)
{
 for (int pin = 0; pin < 3; pin ++)
 {
 if (pinLEDstates[led][pin] == -1)
 {
 pinMode(pins[pin], INPUT);
 }
 else
 {
 pinMode(pins[pin], OUTPUT);
 digitalWrite(pins[pin], pinLEDstates[led][pin]);
 }
 }
}

void clearPins()
{
 for (int pin = 0; pin < 3; pin ++)
 {
 pinMode(pins[pin], INPUT);
 }
}

The key to this code is the pinLEDstates data structure. This specifies the states that
the controlling pins should be set to for a particular LED. So, LED3 has the pattern
–1, 1, 0. This means that for LED3 to be lit, the first control pin should be set to an
input (–1), the second control pin to a HIGH digital output, and the third to a LOW
digital output. If you check Figure 14-10 this will confirm those settings.

The loop function first prompts for a particular LED and then toggles that LED turn‐
ing it on if it was off and off if it was on. The array ledStates is used to keep track of
which LEDs should be on or off.

The loop function then calls refresh, which first clears all the pins setting them to
inputs using clearPins and then for each of the LEDs uses setPins to either set
the pins appropriately to turn the LED on or not depending on that LED’s entry in
ledState.

This works fine for a fairly small number of LEDs, assuming that the Arduino is
not doing much else, so that refresh can be called frequently. You may have noticed
that the LEDs flicker when serial communication is in progress through the Serial
Monitor.

262 | Chapter 14: LEDs and Displays

Raspberry Pi software
Using a Raspberry Pi instead of an Arduino just requires you to swap the male-to-
male header leads to be male-to-female connectors and choose three GPIO pins. In
the case of the following example program (ch_14_charlieplexing.py) these should be
18, 23, and 24. You should also increase the value of the resistors to 270Ω.

You can find the program with the downloads for the book (see Recipe 10.4):

import RPi.GPIO as GPIO
import thread, time

GPIO.setmode(GPIO.BCM)
pins = [18, 23, 24]

pin_led_states = [
 [1, 0, -1], # LED1
 [0, 1, -1], # LED2
 [-1, 1, 0], # LED3
 [-1, 0, 1], # LED4
 [1, -1, 0], # LED5
 [0, -1, 1] # LED6
]

led_states = [0, 0, 0, 0, 0, 0]

def set_pins(led):
 for pin in range(0, 3):
 if pin_led_states[led][pin] == -1:
 GPIO.setup(pins[pin], GPIO.IN)
 else:
 GPIO.setup(pins[pin], GPIO.OUT)
 GPIO.output(pins[pin], pin_led_states[led][pin])

def clear_pins():
 for pin in range(0, 3):
 GPIO.setup(pins[pin], GPIO.IN)

def refresh():
 while True:
 for led in range(0, 6):
 clear_pins()
 if led_states[led]:
 set_pins(led)
 else:
 clear_pins()
 time.sleep(0.001)

thread.start_new_thread(refresh, ())

14.6 Control Many LEDs | 263

while True:
 x = int(raw_input("Pin (0 to 5) :"))
 led_states[x] = not led_states[x]

The Raspberry Pi version follows the same pattern as the Arduino version except that
the call to refresh is in a separate thread of execution, so the display will automati‐
cally update, even if the Python program is waiting for input.

Discussion
The number of LEDs that can be controlled for the number of GPIO pins (n) used is
given by the formula:

leds = n2 − n

Using four pins, you can have 16–4 = 12 LEDs, whereas 10 pins would give you a
massive 90 LEDs.

See Also
For a great description of Charlieplexing as well as layouts for large numbers of LEDs,
see https://en.wikipedia.org/wiki/Charlieplexing.

14.7 Change the Colors of RGB LEDs
Problem
You want to set the color of an RGB LED connected to the GPIO pins of a Raspberry
Pi or Arduino.

Solution
Wire up a common-cathode RGB LED as shown in Figure 14-12.

Figure 14-12. Wiring up an RGB LED

264 | Chapter 14: LEDs and Displays

https://en.wikipedia.org/wiki/Charlieplexing

The red, green, and blue LEDs, in this example, all have different values of series
resistor to try and provide equal brightness. The three LED channels can either be
simply turned on and off to mix seven different colors from the three control pins, or
you can use PWM on the pins to mix more subtle colors.

Identifying Pins of an RGB LED
Figure 14-13 shows a typical RGB LED identifying the pins.

By convention (but check your datasheet) the longest lead is the common lead and
the other three leads are each for one color channel.

If you are not sure about a device, attach a 1k resistor to the positive end of a voltage
source such as a lab power supply and 9V battery and then test all combinations of
the connections. First, identify the common connection (anode or cathode) and then
work out which color is controlled by which lead.

Figure 14-13. RGB LED Pins

Arduino software
Connect an RGB LED to an Arduino as shown in Figure 14-12 using the three Ardu‐
ino pins 9, 10, and 11 for the blue, green, and red channels, respectively.

14.7 Change the Colors of RGB LEDs | 265

The following sketch can be found with the downloads for the book (Recipe 10.2)
and is called ch_14_rgb_led:

const int redPin = 11;
const int greenPin = 10;
const int bluePin = 9;

void setup() {
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter R G B (E.g. 255 100 200)");
}

void loop() {
 if (Serial.available()) {
 int red = Serial.parseInt();
 int green = Serial.parseInt();
 int blue = Serial.parseInt();
 analogWrite(redPin, red);
 analogWrite(greenPin, green);
 analogWrite(bluePin, blue);
 }
}

By sending three numbers separated by spaces from the Arduino Serial Monitor, you
can mix pretty much any color from the LED.

Raspberry Pi software
When using a Raspberry Pi, you can follow the same approach of creating three
PWM channels using the RPi.GPIO library (see Recipe 10.14) or, as in the following
example, you can install the Python Squid library, which simplifies the process.

To install the Squid library, run the following commands:

$ git clone https://github.com/simonmonk/squid.git
$ cd squid
$ sudo python setup.py install

The equivalent program for controlling the RGB LED from a Raspberry Pi can be a
little fancier and use the Tkinter Python library to make a user interface that allows
you to use sliders to adjust the red, green, and blue channels (Figure 14-14):

from squid import *
from Tkinter import *

rgb = Squid(18, 23, 24)

class App:

266 | Chapter 14: LEDs and Displays

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 Label(frame, text='Red').grid(row=0, column=0)
 Label(frame, text='Green').grid(row=1, column=0)
 Label(frame, text='Blue').grid(row=2, column=0)
 scaleRed = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateRed)
 scaleRed.grid(row=0, column=1)
 scaleGreen = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateGreen)
 scaleGreen.grid(row=1, column=1)
 scaleBlue = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateBlue)
 scaleBlue.grid(row=2, column=1)
 def updateRed(self, duty):
 rgb.set_red(float(duty))
 def updateGreen(self, duty):
 rgb.set_green(float(duty))

 def updateBlue(self, duty):
 rgb.set_blue(float(duty))

root = Tk()
root.wm_title('RGB LED Control')
app = App(root)
root.geometry("200x150+0+0")
root.mainloop()

Figure 14-14. Adjusting the RGB LED Color Using a User Interface

14.7 Change the Colors of RGB LEDs | 267

Discussion
The LED in Figure 14-12 is a common cathode device; that is, all the negative termi‐
nals (cathodes) of the LEDs are connected together. RGB LEDs are also available in
common anode form, which can sometimes be more convenient if they are being
controlled by transistors as it allows low-side switching.

See Also
For recipes on PWM for Arduino and Raspberry Pi, see Recipe 10.13 and Recipe
10.14, respectively.

The easiest way to control large numbers of RGB LEDs is to use addressable LED
strips as described in Recipe 14.8.

14.8 Connect to Addressable LED Strips
Problem
You want to control a strip of addressable LEDs, often referred to as neopixels, from
an Arduino or Raspberry Pi.

Solution
Do the power calculations carefully for your pixels and then use a single GPIO pin to
send the data to the pixel array. Figure 14-15 shows a typical arrangement for a large
number of pixels. If you only have a few pixels (say 5–10), you can power them
directly from your Arduino or Raspberry Pi.

Figure 14-15. Schematic for Using WS2812 Addressable LED Strips

If you don’t mind taking the risk of damaging your Pi, Arduino, or whatever is sup‐
plying USB power to them, you can power more pixels as long as you are extremely

268 | Chapter 14: LEDs and Displays

careful in your code to keep the brightness of the pixels well below the maximum
brightness. However, this is not recommended.

Arduino software
To test out an addressable LED strip with an Arduino, connect pin D9 to the data
terminal of an addressable LED strip.

The Arduino sketch ch_14_neopixel is included in the downloads for the book (see
Recipe 10.2). The sketch uses the Adafruit NeoPixel library. This can be installed
from within the Arduino IDE using the Library Manager by selecting the menu
option Sketch→Include Library→Manage Libraries.

Once the Library Manager is open scroll down and select Adafruit NeoPixel and then
click Install.

#include <Adafruit_NeoPixel.h>

const int pixelPin = 9;
const int numPixels = 10;

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(numPixels, pixelPin,
 NEO_GRB + NEO_KHZ800);

void setup() {
 pixels.begin();
}

void loop() {
 for (int i = 0; i < numPixels; i++) {
 int red = random(64);
 int green = random(64);
 int blue = random(64);
 pixels.setPixelColor(i, pixels.Color(red, green, blue));
 pixels.show();
 }
 delay(100);
}

Change the values of pixelPin and numPixels to match the GPIO pin you are using
and the number of pixels in your strip.

Each pixel will be allocated red, green, and blue intensities at random. Note that the
maximum of 64 is used rather than the full range of 0 to 255 because an intensity of
255 is actually very bright.

Raspberry Pi software
To test out an addressable LED strip with Raspberry Pi, connect GPIO10 to the data
terminal of an addressable LED strip.

14.8 Connect to Addressable LED Strips | 269

To use the display, you first need to install some libraries by running the following
commands:

$ git clone https://github.com/doceme/py-spidev.git
$ cd py-spidev/
$ make
$ sudo make install
$ cd ..
$ git clone https://github.com/joosteto/ws2812-spi.git
$ cd ws2812-spi
$ sudo python setup.py install

You still also need to enable SPI on your Raspberry Pi (see Recipe 10.16).

You can find a program to test out the LED display in the file ch_14_neopixels.py. See
Recipe 10.4 for information on downloading the Python example programs.

import spidev
import ws2812
from random import randint
import time

spi = spidev.SpiDev()
spi.open(0,0)

N = 10
 # g r b
pixels = []
for x in range(0, 10):
 pixels.append([0, 0, 0])

while True:
 for i in range(0, N):
 pixels[i] = [randint(0, 64), randint(0, 64), randint(0, 64)]
 ws2812.write2812(spi, pixels)
 time.sleep(0.1)

Each pixel is represented in an array of three values. These are in order green, red,
and blue rather than the more usual red, green, blue. That’s just how the library is. An
array (pixels) of N elements where N is the number of pixels is created by using a for
loop to append N arrays of green, red, and blue to the pixels array.

The main loop acts just like its Arduino counterpart. It allocates color intensities at
random to each pixel position before using the ws2812 library to write out the pixels
to the GPIO pin.

Discussion
If you are using a Raspberry Pi, then you may need to level shift the data output
(Recipe 10.17), although I have never found this to be necessary in practice. Looking

270 | Chapter 14: LEDs and Displays

at the datasheet for the WS2812, the minimum input voltage to count as a logical
HIGH is 0.7 times the supply voltage (5V). This gives a theoretical value of 3.5V.

You can make a convenient display to attach to an Arduino or Raspberry Pi by sacri‐
ficing jumper leads by snipping off one connector and soldering the wire to the LED
strip. Figure 14-16 shows such a display connected to a Raspberry Pi. Note the use of
the heat-shrink sleave to help stop the solder joints from flexing.

Figure 14-16. A Handy Addressable Pixel Display

See Also
For more information on the ws2812-spi library, see https://github.com/joosteto/
ws2812-spi, including instructions on using the NumPy library to improve perfor‐
mance for long LED strings.

You can find the datasheet for the WS2812 here: https://cdn-shop.adafruit.com/data‐
sheets/WS2812.pdf.

To control a single RGB LED directly, see Recipe 14.7.

Addressable LED pixels are not confined to strips of LEDs; you can also buy them
organized into rings (Adafruit product 1586) and arrays (Adafruit product 1487).

An alternative library that is based on the Raspberry Pi’s DMA hardware rather than
its SPI can be found here: https://github.com/richardghirst.

14.9 Use an I2C 7-Segment LED Display
Problem
You want to use a 7-segment display but without the spaghetti wiring of Recipe 14.5.

14.9 Use an I2C 7-Segment LED Display | 271

https://github.com/joosteto/ws2812-spi
https://github.com/joosteto/ws2812-spi
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://github.com/richardghirst

Solution
Use a ready-made I2C display module like the one shown in Figure 14-17.

Figure 14-17. An Adafruit 7-Segment Display

This module and similar modules that can be found on eBay, with four or even eight
digits, are a convenient way to add a 7-segment LED display to an Arduino or Rasp‐
berry Pi.

Figure 14-18 shows how to wire one up using two GPIO pins.

Figure 14-18. Connecting an I2C Display to an Arduino or Raspberry Pi

The I2C serial interface needs two data pins as well as 5V of power. On both the
Arduino and Raspberry Pi, specific pins must be used for the I2C interface. On the

272 | Chapter 14: LEDs and Displays

Arduino Uno, these are the SCL (serial clock) and SDA (serial data) pins (see Recipe
10.7) and on a Raspberry Pi, these are GPIO2 and GPIO3.

This display and many types of displays like it use the HT16K33 IC, which can
actually control up to 16 segments in 8 digits. Although the module needs to be pow‐
ered with 5V, its I2C interface works fine from 3.3V Raspberry Pi GPIO pins, so no
level conversion is necessary.

Arduino software
The sketch uses the Adafruit LED Backpack library and Adafruit GFX library. These
can be installed from within the Arduino IDE using the Library Manager by selecting
the menu option Sketch→Include Library→Manage Libraries.

Once the Library Manager has opened scroll down and select the two libraries and
and then click Install.

Adafruit provides a whole load of examples for using the library that you can access
directly from the Arduino IDE. A good example to try out can be found under the
menu item File→Examples→Adafruit Backpack Library→sevenseg.

Raspberry Pi software
The connections between the Raspberry Pi and the module are as follows:

• VCC (+) on the display to 5V on the Raspberry Pi GPIO connector
• GND (–) on the display to GND on the Raspberry Pi GPIO connector
• SDA (D) on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO connector
• SCL (C) on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO connector

VCC is the abbreviation for volts collector collector, and is frequently used to identify
the positive power supply pin of an IC or module.

Before you can use the display, you will need to enable the Raspberry Pi’s I2C inter‐
face by following Recipe 10.15.

Adafruit also provides Python code for this module. To install it, enter the following
commands into the terminal:

$ sudo apt-get update
$ sudo apt-get install build-essential python-dev
$ sudo apt-get install python-imaging
$ git clone https://github.com/adafruit/Adafruit_Python_LED_Backpack.git
$ cd Adafruit_Python_LED_Backpack
$ sudo python setup.py install

A good example to try out is the clock example sevensegment_test.py.

14.9 Use an I2C 7-Segment LED Display | 273

Discussion
Building a project using a module like this is fine when you are developing a proto‐
type, but in a finished product, you would most likely use direct multiplexing as
described in Recipe 14.5 (to reduce costs) or use the HT16K33 IC on a circuit board
of your own design, if you really need a hardware driver.

I2C Addresses
In theory, you can connect up to 255 devices using the same two SDA and SCL pins
of an Arduino or Raspberry Pi. Each device attached to the bus must have its own
unique address.

This means that if you have, say, two identical displays connected to the same bus,
you need to be able to change the address of one of the modules. On most I2C devi‐
ces, you will find solder switches like the ones shown in Figure 14-19 that allow you
to set a certain address by bridging the gaps with solder. You should refer to the docu‐
mentation for the module to do this.

Figure 14-19. Using Solder Switches to Select the Address of an I2C Module

See Also
You can find lots more information on this display at its project page on Adafruit.

To control a similar display but using multiplexing, see Recipe 14.5.

You can download the HT16K33 datasheet from http://bit.ly/2mbaWyP.

274 | Chapter 14: LEDs and Displays

https://www.adafruit.com/products/881
http://bit.ly/2mbaWyP

14.10 Display Graphics or Text on OLED Displays
Problem
You need to display text and graphics on a small display.

Solution
Use an I2C OLED display like the one shown attached to an Arduino in Figure 14-20.

Figure 14-20. An I2C OLED Display Attached to an Arduino

The display has the same four connections as the display used in Recipe 14.9 so you
can make the same connections as shown in Figure 14-18.

Arduino software
Wire up the display as described in Recipe 14.9.

You will also need to add the Adafruit GFX and SSD1306 libraries to your Arduino
IDE by using the Library Manager (from the menu Sketch→Include Library→Library
Manager and then scroll down the list and install both the Adafruit GFX Library and
the Adafruit SSD1306 library).

14.10 Display Graphics or Text on OLED Displays | 275

The example sketch ch_14_oled will display the message shown in Figure 14-20. To
install the Arduino programs for the book, see Recipe 10.2.

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

Adafruit_SSD1306 display(4);

void setup()
{
 display.begin(SSD1306_SWITCHCAPVCC, 0x3c);
 display.clearDisplay();
 display.drawRect(0, 0, display.width()-1, display.height()-1, WHITE);
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(5,10);
 display.print("Electronics Cookbook");
 display.display();
}

void loop()
{
}

Raspberry Pi software
Wire up the display as described in Recipe 14.9.

Before you can use the display, you will need to enable the Raspberry Pi’s I2C inter‐
face by following Recipe 10.15.

You will also need to download and install the SSD1306 Python library and prerequi‐
sites using the following commands:

$ sudo pip install pillow
$ git clone https://github.com/rm-hull/ssd1306.git
$ cd ssd1306
$ sudo python setup.py install

Now change the directory to the book’s example programs and run the program
ch_14_oled.py (see Recipe 10.4). The text “Electronics Cookbook” with a rectangular
border should appear on the display. If it doesn’t, then there is a good chance you will
need to change the I2C address of the device in the file demo_opts.py that is with the
other downloads. Change line 13 from 0x3c to the I2C address of your device. The
file ch_14_oled.py is listed here:

from demo_opts import device
from oled.render import canvas
from PIL import ImageFont
from demo_opts import args

276 | Chapter 14: LEDs and Displays

font = ImageFont.load_default()

with canvas(device) as draw:
 draw.rectangle((0, 0, device.width-1, device.height-1), outline=255, fill=0)
 font = ImageFont.load_default()
 draw.text((5, 20), 'Electronics Cookbook', font=font, fill=255)

Discussion
Once you get into the realm of needing a display that can show text and graphics, you
can of course use an HDMI monitor with your Raspberry Pi.

See Also
For a simple numeric display see Recipe 14.9 and for a low-cost two-line alphanu‐
meric display see Recipe 14.11.

The SSD1306 library page on GitHub has more examples and documentation for
using these displays: https://github.com/rm-hull/ssd1306.

14.11 Display Text on Alphanumeric LCD Displays
Problem
You need a low-cost alphanumeric display.

Solution
Use an LCD module based on the HD44780 IC. Figure 14-21 shows one of these dis‐
plays wired to an Arduino and Figure 14-22 shows how the display should be connec‐
ted on a breadboard. Figure 14-23 shows the connections for a Raspberry Pi as a
schematic.

The HD44780 can be configured to use either an 4- or 8-bit parallel data bus. If the 4-
bit bus is used only bits 4 to 7 of the bus are used. The pin Vo is used to control the
contrast of the screen. You will need to adjust R1 to be able to see anything on the
screen.

14.11 Display Text on Alphanumeric LCD Displays | 277

https://github.com/rm-hull/ssd1306

Figure 14-21. An HD44780 16x2 LCD Display Connected to an Arduino

Figure 14-22. Wiring an HD44780 Display to an Arduino Uno (Breadboard)

278 | Chapter 14: LEDs and Displays

Figure 14-23. Wiring an HD44780 Display to a Raspberry Pi

Arduino software
The Arduino IDE includes a library called LiquidCrystal that takes care of all the
communications with the HD44780 IC. The following example can be found with the
Arduino downloads for the book (Recipe 12.2) in the sketch ch_14_lcd:

#include <LiquidCrystal.h>

// RS EN D4 D5 D6 D7
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

void setup() {
 lcd.begin(16, 2);
 lcd.print("Electronics");
 lcd.setCursor(0, 1);
 lcd.print("Cookbook");
}

void loop() {
 lcd.setCursor(10, 1);
 lcd.print(millis() / 1000);
}

Raspberry Pi software
To use an HD44780 display on a Raspberry Pi, you will first need to install the Ada‐
fruit CharLCD Python library by entering the following commands:

$ git clone https://github.com/adafruit/Adafruit_Python_CharLCD.git
$ cd Adafruit_Python_CharLCD
$ sudo python setup.py install

You can now try out the example program ch_14_lcd.py:

import time
import Adafruit_CharLCD as LCD

Raspberry Pi pin configuration:

14.11 Display Text on Alphanumeric LCD Displays | 279

lcd_rs = 27 # Note this needs to be changed to 21 for Model B rev1 Pis.
lcd_en = 22
lcd_d4 = 25
lcd_d5 = 24
lcd_d6 = 23
lcd_d7 = 18
lcd_backlight = 4

lcd_columns = 16
lcd_rows = 2

lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7,
 lcd_columns, lcd_rows, lcd_backlight)

lcd.message('Electyronics\nCookbook')
t0 = time.time()

while True:
 lcd.set_cursor(10, 1)
 lcd.message(str(int(time.time()-t0)))
 time.sleep(0.1)

Discussion
These displays are available in different sizes. So, in addition to the 16x2 (2 rows of 16
characters) used above, other common sizes are 8x1, 20x2, and 20x4.

See Also
Adafruit has a wide selection of these types of displays, including ones that have an
RGB color backlight (https://www.adafruit.com/products/399).

280 | Chapter 14: LEDs and Displays

https://www.adafruit.com/products/399

CHAPTER 15

Digital ICs

15.0 Introduction
In many projects the only digital IC you will need is a microcontroller. With sufficient
GPIO pins you can do most digital tasks. In this chapter, you will find recipes for dig‐
ital ICs that still manage to find a role in modern electronics design.

Sometimes, a single digital logic IC is all you need. A single digital logic IC is often
cheaper and removes the need for programming that would otherwise arise if you
used a microcontroller.

15.1 Protecting ICs from Electrical Noise
Problem
You want to use an IC, but you want to avoid errors caused by electrical noise.

Solution
Use a 100nF capacitor as close as possible to the power pins of the digital IC. The
shorter the leads to the capacitor the better.

This process of connecting a capacitor with short circuit board tracks to the power
pins of an IC is called “decoupling” because each IC has its own little reservoir of
charge and will therefore not be “coupled” to a neighboring capacitor by affecting its
power supply. Capacitors used in this way are also called “bypass” capacitors.

Figure 15-1 shows a circuit board containing a digital IC with a 100nF multilayer
ceramic (MLC) capacitor for both a through-hole and SMD.

281

Figure 15-1. Decoupling Capacitors

The circuit board on the right of Figure 15-1 actually has two capacitors in parallel as
the decoupling capacitor. The smaller one is 100nF and the larger one 10µF. You may
think that the effect of the 100nF would be lost, but its lower ESR (see Recipe 3.2)
allows it to respond faster to pulses of power consumption from the chip. So, the
10µF capacitor is in turn providing a larger local energy store for the smaller capaci‐
tor and IC to draw on, but one that has a higher ESR and therefore cannot respond as
quickly. Such an arrangement of ever-decreasing capacitor values as you approach the
power rails of the IC is particularly common where larger currents are being switched
such as in motor controllers and audio power amplifiers.

Discussion
Digital ICs contain lots of transistors that switch very quickly. The decoupling capaci‐
tor provides a little reservoir of charge so that this switching does not result in exces‐
sive electrical noise on the power lines that could go on to affect other parts of the
circuit.

It is considered to be good practice to include a decoupling capacitor next to every
digital IC. In fact, this is also true of analog ICs.

282 | Chapter 15: Digital ICs

See Also
For more information on capacitors, see Chapter 3.

15.2 Know Your Logic Families
Problem
You want to know what type of logic family you should use and its characteristics.

Solution
Use high-speed CMOS (complimentary metal-oxide semiconductor), the 74HC fam‐
ily of chips, unless you are repairing vintage electronics.

Discussion
Logic-gate ICs, like the mafia, are arranged into families. TTL (transistor transistor
logic) used to be a popular choice, but is now totally obsolete unless you are repairing
an equally obsolete computer from the last century. TTL chips starting with the num‐
ber 74 (e.g., 7400) used to compete with CMOS chips with names that started with 40
(e.g., 4011). Each had their own overlapping ranges of logic gates, flip-flops, shift reg‐
isters, and counters.

TTL was faster than CMOS, but CMOS used less current and was far less fussy about
its supply-voltage range. Now these two families have merged into a single “best-of-
both-worlds” family called high-speed CMOS. If you started playing with electronics
in the 1970s, you can still find your favorite logic ICs from both families but under
one name starting with 74HC. For instance, the 7400 of old is now the 74HC00 and
the 4011 of old is now called the 74HC4001.

A high-speed CMOS chip has a supply-voltage range of 2V to 6V and only consumes
about 1µA until it starts switching. Their outputs can also generally source or sink
4mA at their outputs (per gate).

The original 40xx CMOS is still available and can be useful where you need a greater
power-supply range than high-speed CMOS can provide.

See Also
For the datasheet of a typical high-speed CMOS device, see http://www.ti.com/lit/ds/
symlink/sn74hc00.pdf.

15.2 Know Your Logic Families | 283

http://www.ti.com/lit/ds/symlink/sn74hc00.pdf
http://www.ti.com/lit/ds/symlink/sn74hc00.pdf

15.3 Control More Outputs Than You Have GPIO Pins
Problem
You have run out of GPIO pins on your Arduino or Raspberry Pi and want to control
some LEDs.

Solution
Use a serial-to-parallel shift register such as the 74HC4094 and write some code to
load its registers with data using a serial interface that only requires three pins. LEDs
can then be attached to the outputs. Figure 15-2 shows a schematic for this.

Figure 15-2. Connecting an 74HC4094 to an Arduino Uno

The total current allowed by the 74HC4094 is 50mA so assuming 6mA per LED, a
suitable series resistor would be 680Ω if all the LEDs are lit at the same time, to allow
8 x 6mA = 48mA.

Arduino software
You can find the Arduino code to send data to the shift register with the downloads
for the book (Recipe 10.2) in the sketch ch_15_sift_reg:

const int strobePin = 5;
const int dataPin = 6;
const int clockPin = 7;

void setup() {

284 | Chapter 15: Digital ICs

 pinMode(strobePin, OUTPUT);
 pinMode(dataPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter Byte");
}

void loop() {
 if (Serial.available()) {
 char bits = Serial.parseInt();
 shiftOut(dataPin, clockPin, MSBFIRST, bits);
 digitalWrite(strobePin, HIGH);
 delayMicroseconds(10);
 digitalWrite(strobePin, LOW);
 Serial.println(bits, 2);
 }
}

This sketch uses the Arduino shiftOut function to send the serial data and uses these
parameters: the pin to send the data on, the clock pin, a flag to determine the order
the data is sent (in this case, most significant bit [MSB] first), and the actual data to
send.

If you open the Arduino Serial Monitor, you will be prompted for a value to load into
the shift register. This value will be shifted in and then a confirmation of the data in
binary will be displayed as shown in Figure 15-3. The value entered should be a deci‐
mal value between 0 and 255. This value will be echoed in binary in the Serial Moni‐
tor for confirmation.

Figure 15-3. Sending Data to the Shift Register

15.3 Control More Outputs Than You Have GPIO Pins | 285

Raspberry Pi software
The following test program assumes you have connected the STROBE pin of the
74HC4094 to GPIO18, the DATA pin to GPIO23, and the CLOCK pin to GPIO24.

The Python code (ch_15_shift_reg.py) follows a similar pattern as that of the Arduino,
but in this case we have to implement the shift_out function. This sets the data_pin
to the eighth bit of the data, and then pulses the clock_pin before shifting the data
left by one bit position, and so on for all eight bits in MSB first order:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

strobe_pin = 18
data_pin = 23
clock_pin = 24

GPIO.setup(strobe_pin, GPIO.OUT)
GPIO.setup(data_pin, GPIO.OUT)
GPIO.setup(clock_pin, GPIO.OUT)

def shift_out(bits): # MSB first. 8 bits
 for i in range(0, 8):
 b = bits & 0b10000000
 bits = bits << 1
 GPIO.output(data_pin, (b == 0b10000000))
 time.sleep(0.000001)
 GPIO.output(clock_pin, True)
 time.sleep(0.000001)
 GPIO.output(clock_pin, False)
 time.sleep(0.000001)

try:
 while True:
 bits = input("Enter Byte ")
 print(bin(bits))
 shift_out(bits)
 GPIO.output(strobe_pin, True)
 time.sleep(0.000001)
 GPIO.output(strobe_pin, False)

finally:
 print("Cleaning up")
 GPIO.cleanup()

Discussion
Figure 15-4 shows the logical diagram for the 74HC4094.

286 | Chapter 15: Digital ICs

Figure 15-4. The 74HC4094

The 74HC4094 is a serial-to-parallel shift register. The 8-stage shift register’s data is
set a bit at a time by setting the data (D) pin either HIGH or LOW and then pulsing
the clock (CP) pin to transfer that bit. The data pin is then set to the next value and
the clock pulsed again to shift the bit already in the shift register along one position
and then add the new bit at the beginning. This process continues until all eight bits
are loaded into the shift register.

The contents of the shift register are not actually transferred to the 74HC4094’s out‐
puts until the strobe pin (STR) is pulsed.

The 74HC4094 also has an output enable (OE) pin that switches all eight outputs
either to a high impedance state or to the bit pattern of HIGHs and LOWS in the 3-
state-outputs register. If you connect this OE pin to a PWM output you can use it to
control the brightness of all the LEDs at the same time.

You can cascade a number of shift registers together by tying their clocks together
and attaching the QS2 data output from one shift register to the data input of
the next.

See Also
Another way of controlling lots of LEDs from a small number of GPIO pins is to use
Charlieplexing (Recipe 14.6).

15.3 Control More Outputs Than You Have GPIO Pins | 287

You can find the datasheet for the 74HC4094 here: http://bit.ly/2mqB0ET.

For more information on the Arduino shiftOut function, see http://bit.ly/2msRHAg.

15.4 Build a Digital Toggle Switch
Problem
You want to replace a toggle switch with two push switches that turn an LED on
and off.

Solution
Use an 74HC00 IC to make a reset-set flip-flop as shown in Figure 15-5.

Figure 15-5. Using Flip-Flop and Push Buttons to Switch an LED On and Off

When SW1 is pressed the LED will light and stay lit until SW2 is pressed.

Discussion
R1 and R2 are pull-up resistors that keep the inputs to flip-flop high until the buttons
are pressed. One advantage of this way of switching is that if the switches bounce
(Recipe 12.1) it will have no effect on the operation of the circuit.

Note that in Figure 15-5 the inputs of the two unused gates in the 74HC00 are tied to
ground. This is considered good practice as it prevents the otherwise floating inputs
from causing the gates to oscillate in time with electrical noise.

288 | Chapter 15: Digital ICs

http://bit.ly/2mqB0ET
http://bit.ly/2msRHAg

In addition to switching an LED on or off, you could adapt this circuit to switch large
loads with a transistor by combining it with Recipe 11.1 or Recipe 11.3.

See Also
You can find the datasheet for the 74HC00 here: http://bit.ly/2lLK0R5.

15.5 Reduce a Signal’s Frequency
Problem
You have a high frequency that you want to reduce to a lower frequency.

Solution
Use a frequency-divider IC such as the 8-stage 74HC590 in the arrangement shown
in Figure 15-6.

Figure 15-6. A Frequency Divider Using the 74HC590

The output at QA will be half the input frequency f, QB a quarter, and so on until QH
has an output frequency of 1/256 of the input frequency.

Discussion
For most designs it is preferable to use a microcontroller when it comes to things like
counting. However, counting clock cycles with a microcontroller is significantly
slower than the clock frequency of the microcontroller itself. So, a maximum fre‐
quency might be a few hundred kHz. To count higher frequencies, QH or one of the
other outputs of the 74HC590 could be connected to a digital input on a microcon‐
troller to allow frequencies up to the 24MHz maximum the 74HC590 allows.

15.5 Reduce a Signal’s Frequency | 289

http://bit.ly/2lLK0R5

See Also
You can find the datasheet for the 74HC590 here: http://www.nxp.com/documents/
data_sheet/74HC590.pdf.

15.6 Connect to Decimal Counters
Problem
You have run out of GPIO pins on your Arduino or Raspberry Pi and want 10 more
outputs of which only one is HIGH at a time.

Solution
Connect the clock and reset the pins of a 74HC4017 decimal counter IC to an Ardu‐
ino or Raspberry Pi and attach LEDs to the outputs of the 74HC4017 with suitable
current-limiting resistors as shown in Figure 15-7.

Figure 15-7. Using a 74HC4017 Decimal Counter with an Arduino

The 74HC4017 is a decade counter with decoded outputs. That is, each time it
receives a pulse on its clock (CLK) pin it advances to the next output. So, first Q0
is high, then Q1, and so on. The reset pin (RES) sets the counter back to the first out‐
put Q0.

Since only one of the LEDs is ever on at a time, the full 20mA output of the
74HC4017 can be used to drive the LEDs.

290 | Chapter 15: Digital ICs

http://www.nxp.com/documents/data_sheet/74HC590.pdf
http://www.nxp.com/documents/data_sheet/74HC590.pdf

Arduino software
The Arduino sketch ch_15_decade_counter is given here. You can find it with the
downloads for the book (Recipe 10.2):

const int resetPin = 6;
const int clockPin = 7;

void setup() {
 pinMode(resetPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter digit 0..9");
}

void loop() {
 if (Serial.available()) {
 int digit = Serial.parseInt();
 setDigit(digit);
 }
}

void setDigit(int digit) {
 digitalWrite(resetPin, HIGH);
 delayMicroseconds(1);
 digitalWrite(resetPin, LOW);
 for (int i = 0; i < digit; i++) {
 digitalWrite(clockPin, HIGH);
 delayMicroseconds(1);
 digitalWrite(clockPin, LOW);
 delayMicroseconds(1);
 }
}

The code starts by pulsing the reset pin so that the output Q0 will be high. It then
issues the number of pulses to the clock pin requested by the number sent from the
Serial Monitor.

The reason the LEDs don’t flicker and you don’t see the LEDs before the selected
LED flash is that this pulsing happens very quickly (in fact, in a few millionths of a
second).

Raspberry Pi software
The equivalent Python sketch for the Raspberry Pi assumes you have GPIO18 con‐
nected to the reset pin of the 74HC4017 and GPIO23 connected to the clock pin.

The program is called ch_15_decade_counter.py. See Recipe 10.4 for information on
installing the example programs:

import RPi.GPIO as GPIO
import time

15.6 Connect to Decimal Counters | 291

GPIO.setmode(GPIO.BCM)

reset_pin = 18
clock_pin = 23

GPIO.setup(reset_pin, GPIO.OUT)
GPIO.setup(clock_pin, GPIO.OUT)

def set_digit(digit):
 GPIO.output(reset_pin, True)
 time.sleep(0.000001)
 GPIO.output(reset_pin, False)
 time.sleep(0.000001)
 for i in range(0, digit):
 GPIO.output(clock_pin, True)
 time.sleep(0.000001)
 GPIO.output(clock_pin, False)
 time.sleep(0.000001)

try:
 while True:
 digit = input("Enter digit 0..9 ")
 set_digit(digit)

finally:
 print("Cleaning up")
 GPIO.cleanup()

The program works in just the same way as its Arduino counterpart.

Discussion
Using a counter like the 74HC4017 can be useful when multiplexing an LED display
(Recipe 14.5), as you can use it to select each digit of a 7-segment display or column
of an LED matrix, without tying up too many GPIOs.

See Also
You can find the datasheet for the 74HC4017 here: http://www.nxp.com/documents/
data_sheet/74HC_HCT4017.pdf.

292 | Chapter 15: Digital ICs

http://www.nxp.com/documents/data_sheet/74HC_HCT4017.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT4017.pdf

CHAPTER 16

Analog

16.0 Introduction
This chapter builds on some of the fundamental principles of resistors, capacitors,
and transistors that you have learned about earlier in the book. It also introduces the
extremely useful and versatile 555 timer IC.

The analog theme will be continued in Chapters 17, 18, and 19.

16.1 Filter Out High Frequencies (Quick and Dirty)
Problem
You want to filter out the high-frequency component of a signal, for instance, to con‐
vert a pulsed digital output into a smooth analog output using a low-pass filter.

Solution
In these circumstances, a simple RC filter (Figure 16-1) will suffice to remove most of
the unwanted high-frequency PWM carrier.

Intuitively, all the resistor and capacitor do is make the output slow to respond to
changes to the input. All that remains is to decide on suitable values for R and C. We
can illustrate this with an example.

293

Figure 16-1. Low-pass Filtering of an Arduino-generated PWM Signal

The Arduino Mozzi library (Recipe 18.1) generates PWM (Recipe 10.13) audio out‐
put. The length of the pulses on the constant PWM frequency of 32.7kHz determine
the amplitude of the lower frequency underlying the audio signal (440 Hz).
Figure 16-2 illustrates this.

Figure 16-2. PWM of an Audio Signal

The average output voltage is shown by the dashed line, which increases as the pulses
lengthen.

Using a value of 270Ω for R and \330nF for C produces the filtering shown in
Figure 16-3. The top trace shows the filtered output and the bottom trace the PWM
signal.

You can see that the original sine wave from (top) has been extracted from the PWM
signal (bottom).

294 | Chapter 16: Analog

Figure 16-3. Low-pass Filtering of a PWM Signal

Discussion
The kind of RC filter used here is called a first-order filter and only really works well
if the signal being filtered is much greater than the frequency you want to keep.
Figure 16-4 shows the characteristic plot of gain against frequency.

Figure 16-4. A Low-pass Filter’s Frequency Response

16.1 Filter Out High Frequencies (Quick and Dirty) | 295

A gain of 1 means the signal is unchanged in magnitude. In the “stop band” where the
signal is being attenuated, the signal’s amplitude halves every time the frequency dou‐
bles.

The start of the stop band is taken to be after the “corner frequency” (f0), which is
defined as the frequency at which the signal amplitude has been reduced to 75% for
its original value.

The corner frequency is given by the formula:

f c = 1
2πRC

Using a resistor of 270Ω and 330nF capacitor the corner frequency is:

f c = 1
2πRC = 1

2π × 270 × 330n = 1 . 786kHz

With a corner frequency of 1.768kHz and a frequency of 32.7kHz for the PWM signal
(that we are trying to filter out) a quick check will show you that you are looking at a
little over four doublings of 1.786kHz, which gives a reduction of four halvings of the
amplitude of that high-frequency component. This will reduce the amplitude of the
32.7kHz signal to about 1/16 of its unattenuated value, which is why the PWM fre‐
quency is still visible on top of the 440Hz sinewave shown in Figure 16-3.

If you want to try out this experiment, then install the Mozzi library into your Ardu‐
ino IDE by downloading the ZIP for the library from GitHub and then installing the
ZIP for the library from the Arduino IDE’s menu (Sketch→Include
Library→Add .ZIP Library).

From the Arduino IDE’s example menu, upload Files→Exam‐
ples→Mozzi→Basics→Sinewave onto your Arduino and wire it up as shown in
Figure 16-1.

Attaching an oscilloscope to the unfiltered and filtered outputs of D9 should give you
a trace similar to Figure 16-3.

See Also
For a better-quality filter with a much steeper fall-off of gain with frequency,
see Recipe 17.7.

In this recipe, we have talked about attenuation of a signal’s amplitude in terms of
halving or quartering. The more common unit for attenuation and amplification of a
signal is the dB (decibel). This is described in Recipe 17.1.

296 | Chapter 16: Analog

https://github.com/sensorium/Mozzi

A great way to help design filters is to use simulation. This example is used in Recipe
21.11.

For instructions on using an oscilloscope, see Recipe 21.9.

16.2 Create an Oscillator
Problem
You want to make a simple oscillator using a pair of transistors to flash LEDs or gen‐
erate an audio signal.

Solution
Use the transistors in the arrangement shown in Figure 16-5. This arrangement is
also sometimes called an “astable,” meaning it has no stable state, and instead oscil‐
lates between two states.

Figure 16-5. A Two-transistor Oscillator

When power is first applied to the circuit both Q1 and Q2 will be off. Very slight dif‐
ferences between the capacitor values and the values of R2 and R3 mean that one of
the capacitors will start to charge through R2 or R3 faster than the other. The faster-
charging capacitor will win the race to turn on the transistor whose base it is connec‐
ted to. Current flows through this transistor turning on the LED and drops the collec‐
tor voltage allowing the slower capacitor to start charging until the opposite transis‐
tor turns on and so on.

Discussion
The frequency of this oscillator is determined by the time constant of C1 and R2 (C1
and C2 should have the same value, as should R2 and R3), but also depends on the
characteristics of the transistor. For the circuit shown in Figure 16-5 and a supply

16.2 Create an Oscillator | 297

voltage of 9V, the frequency was measured as 2.8Hz, implying that the frequency is
related to R2 and C1 by the formula:

f = 1
0 . 36R2C1

See Also
For an oscillator that uses the NE555 timer IC, see Recipe 16.5.

You can see a video of this circuit in action here: https://youtu.be/-NvMFmPHc4s.

16.3 Flash LEDs in Series
Problem
You want to make an odd number (three or more) of LEDs flash in series without
using a microcontroller or digital IC.

Solution
Build a ring oscillator using MOSFETs as shown in the schematic in Figure 16-6.

Figure 16-6. A Ring Oscillator

The way to understand how this circuit works is to think of each transistor stage as an
inverter. That is, if the gate of the transistor is low, then the drain of the transistor will
be pulled high by the LED and resistor. As the transistor’s associated gate capacitor
charges, the gate voltage will gradually rise until the transistor is on and then the
drain will go low. The final inverter stage then feeds back to the first transistor and
the cycle continues. This does not work with an even number of stages as the outputs

298 | Chapter 16: Analog

https://youtu.be/-NvMFmPHc4s

of the first and last stages would both be high and low (in phase) with each other and
no oscillation would occur.

Discussion
This oscillator produces quite a mesmeric effect as the LED brightness gradually
increases and decreases.

In practical terms, when considering a large number of LEDs, you would probably
use a microcontroller with LEDs attached to digital outputs, or a decade counter like
the 4017 described in Recipe 15.6.

See Also
For an interesting Wikipedia article on the ring oscillator, see https://en.wikipedia.org/
wiki/Ring_oscillator.

There is a video of this circuit here: https://youtu.be/9O5Ojhr0oGg.

16.4 Avoid Drops in Voltage from Input to Output
Problem
You need to buffer a high-impedance input voltage so that it can be attached to a sig‐
nificant load at its output without affecting the input.

Solution
Use a BJT arranged as an emitter-follower, as shown in Figure 15-7. In this case, the
input is provided by a pot. The output voltage will follow the input voltage (less the
base-emitter voltage).

On the face of it, this may seem pointless and you might be asking yourself why you
wouldn’t just take the output from the slider of R1. The reason is that even a very
slight load resistance on R1 will alter its output voltage, whereas by using a transistor,
a much larger load current can be drawn.

Whatever the voltage set at the base of the transistor (above about 0.6V), the emitter
will always be about 0.6V lower, but able to provide significantly more current. In
fact, the ratio of base-to-collector current is the DC gain of the transistor. For a tran‐
sistor like the 2N3904, this is generally taken to be about 100. So for a collector cur‐
rent of say 10mA, less than 100µA should be flowing into the base from R1.

16.4 Avoid Drops in Voltage from Input to Output | 299

https://en.wikipedia.org/wiki/Ring_oscillator
https://en.wikipedia.org/wiki/Ring_oscillator
https://youtu.be/9O5Ojhr0oGg

Figure 16-7. An Emitter-Follower Used as a Buffer

Discussion
An emitter-follower like this can be used as the basis of a voltage regulator using the
schematic in Figure 16-8, although generally a voltage-regulator IC is an easier
option.

Figure 16-8. A Zener Diode/Emitter-Follower Voltage Regulator

As described in Recipe 4.3 the Zener diode will keep the base of Q1 at 5.6V as long as
the input voltage is greater than 5.6V. The Zener diode acts as a voltage reference to
Q1, whose emitter will remain at 5V as long as the load current does not become
great enough to start drawing significant base current and hence cause the voltage at
the base to drop. Using a power Darlington like the TIP120 with its DC current gain
of around 10,000 will provide even better regulation, at higher currents, but at the
expense of a bigger base-emitter voltage drop (see Recipe 5.2).

300 | Chapter 16: Analog

See Also
For a more or less perfect unity gain buffer without the base-emitter voltage drop,
see Recipe 17.6.

For more information on BJTs, see Recipe 5.1.

16.5 Build a Low-Cost Oscillator
Problem
You want a simple low-cost oscillator (a.k.a. astable) that produces a 50% duty cycle
and has a push-pull output capable of 200mA.

Solution
Use an NE555 timer IC in the configuration shown in Figure 16-9.

Figure 16-9. An NE555 Oscillator

This is not the standard astable oscillator schematic for an NE555. But unless you
need to control the duty cycle for PWM or other purposes, it’s fine for a simple oscil‐
lator.

The frequency is set by the values of R2 and C1:

f = 0 . 693
R2C1

So, for an R2 of 10kΩ and a C1 of 10nF, the frequency is:

f = 0 . 693
R2C1

= 0 . 693
10k × 10n = 693

100 kHz = 6 . 93kHz

16.5 Build a Low-Cost Oscillator | 301

To simplify the calculations, standardize a few values of C1. For low-frequency LED
blinking, use a 1μF capacitor; for audio frequencies of a few hundred Hz, use 100nF;
and for higher frequencies into the kHz, use a 10nF capacitor. Fixing the capacitor in
this way means you can use the following formula to calculate the value of R2 that
you need:

R2 = 0 . 693
f C1

Table 16-1 shows some common frequencies and suitable component values.

Table 16-1. Values for Common Components

Frequency C1 R2

1Hz 1µF 693kΩ

2Hz 1µF 347kΩ

50Hz 1µF 13.9kΩ

100Hz 1µF 6.93kΩ

1kHz 10nF 69.3kΩ

10kHz 10nF 6.93kΩ

100kHz 10nF 693Ω

Discussion
Remember that capacitors in particular are generally only accurate at values of ±10%
and the frequency is also somewhat dependent on the supply voltage. Table 16-2
shows the effect of supply voltage on output frequency for this circuit using an R2 of
10kΩ and a C1 of 10nF.

Table 16-2. Sensitivity of Output Frequency to Supply Voltage

Supply Voltage (V) Output Frequency (kHz)

5 5.46

9 6.63

12 7.03

16 7.33

See Also
You can find the datasheet for the NE555 here: http://www.ti.com/lit/ds/symlink/
ne555.pdf.

If you need complimentary outputs from your oscillator, use a 4047 timer IC (Recipe
7.10).

302 | Chapter 16: Analog

http://www.ti.com/lit/ds/symlink/ne555.pdf
http://www.ti.com/lit/ds/symlink/ne555.pdf

The NE555 IC is a versatile device and can also be used as a one-shot timer (Recipe
16.7).

You can also make an oscillator with just two transistors as described in Recipe 16.2.

16.6 Build a Variable Duty Cycle Oscillator
Problem
You need an oscillator (a.k.a. astable) but want to set the duty cycle.

Solution
Use an NE555 timer IC, but this time in the configuration shown in Figure 16-10.

Figure 16-10. An NE555 Oscillator with Adjustable Duty Cycle

The frequency and duty cycle (proportion of the time the output is high to the time it
is low) are set by the values of C1, R1, and R2. The period of time the output is high
during each cycle is:

Thigh = 0 . 693 R1 + R2 C1

The time it is low is given by:

Tlow = 0 . 693 × R2C1

The overall frequency in Hz will be the inverse of these two times added together:

f = 1
Thigh + Tlow

= 1 . 44
R1 + 2R2 C1

16.6 Build a Variable Duty Cycle Oscillator | 303

If you want a fairly even duty cycle, you can just use Recipe 16.5, or make sure that
R1 is much smaller than R2 (without being 0).

To avoid all the math, there are lots of good online calculators out there you can use.
This one is particularly useful as it allows you to enter just the frequency and duty
cycle you want.

Discussion
The NE555 timer is an extremely flexible device. Figure 16-11 shows the internal
structure of the IC.

Figure 16-11. A Look Inside an NE555 Timer IC

The design is centered around a reset-set (RS) flip-flop (see Recipe 15.4). This flip-
flop has an output that will become high if the S input goes high. It will then stay high
until the flip-flop is reset, either by R becoming high or R1 becoming low. The output
of the flip-flop drives both a push-pull output stage (Recipe 11.8) connected to the
OUT pin and an open-collector output connected to pin DISCH, which is used to
discharge a timing capacitor.

304 | Chapter 16: Analog

http://www.daycounter.com/Calculators/NE555-Calculator.phtml

Setting and resetting the flip-flop is achieved by using an arrangement of three resis‐
tors in a voltage divider from the positive supply (VCC) to GND and two compari‐
tors (Recipe 17.10). If the voltage at TRIG falls below ⅓ of the supply voltage, the
lower comparitor sets the flip-flop until the voltage at THRES exceeds ⅔ of the sup‐
ply voltage and the flip-flop is reset.

The CONT (control) pin is not generally used, but it can be used to adjust the
comparitor-threshold voltages. You will also often find schematics where a 10nF
capacitor is connected between CONT and GND. This is an additional decoupling
capacitor that can improve the oscillator stability, but is by no means essential.

In addition to the standard NE555 timer, a number of variations of the device have
been developed. The NE556 is simply a 14-pin IC package that has two NE555 timers
in it sharing common supply pins.

The LMC555 is a CMOS version of the 555 timer that is pin compatible and will
operate down to 1.5V supply.

See Also
You can find the datasheet for the NE555 here: http://www.ti.com/lit/ds/symlink/
ne555.pdf and the datasheet for the 555 here: http://www.ti.com/lit/ds/symlink/
lmc555.pdf.

Figure 16-11 is taken from an informative Wikipedia page on the 555 timer: https://
en.wikipedia.org/wiki/555_timer_IC.

16.7 Make a One-Shot Timer
Problem
You want to create a timer that at the press of a button will turn on an output for a
certain amount of time.

Solution
Figure 16-12 shows an NE555 timer configured as a one-shot (monostable) timer.

When SW1 is pressed, OUT becomes HIGH and stays HIGH until either SW2 is
pressed (to cancel the timer) or a period of time 1.1 x R1 x C1 has elapsed.

For example, a value of C1 of 100µF and R1 of 100kΩ will give a delay of:

1.1 x 100µ x 100k = 11 seconds

16.7 Make a One-Shot Timer | 305

http://www.ti.com/lit/ds/symlink/ne555.pdf
http://www.ti.com/lit/ds/symlink/ne555.pdf
http://www.ti.com/lit/ds/symlink/lmc555.pdf
http://www.ti.com/lit/ds/symlink/lmc555.pdf
https://en.wikipedia.org/wiki/555_timer_IC
https://en.wikipedia.org/wiki/555_timer_IC

Figure 16-12. Using an NE555 Timer as a One-Shot Timer

Discussion
In this timer circuit to achieve timings of a second or more, you need to use an elec‐
trolytic of 100µF or greater.

You can, of course, make R1 a variable resistor, or more likely a fixed resistor and
variable resistor in series in order to set a minimum delay.

See Also
For other 555 timer recipes see Recipe 16.5, Recipe 16.6, Recipe 16.8, Recipe 16.9, and
Recipe 16.10.

16.8 Control Motor Speed
Problem
You want to be able to control the speed of a motor at the turn of a knob, without
having to use an Arduino.

Solution
Use an NE555 timer as shown in Figure 16-13.

For a PWM frequency of around 1kHz, use a value for R1 of 270Ω, R2 a 10kΩ pot,
and C1 100nF.

306 | Chapter 16: Analog

Figure 16-13. PWM Motor Control Using a 555 Timer

Discussion
The NE555 timer output can drive about 200mA, which is only sufficient for a pretty
small motor. Drawing more current than this will cause the IC to overheat and even‐
tually fail. To drive a higher power motor, use a transistor as described in Recipe 13.2.

The minimum duty cycle of this circuit depends on the ratio of R1 to R2. R1 should
be considerably lower than R2 to minimize the duty cycle, but R1 cannot be 0Ω or
the oscillations will stop. A ratio of 40:1 is sufficient to ensure the minimum duty
cycle is just 3–4%.

Figure 16-14 shows the minimum duty cycle with the knob of R2 at one end of its
travel, Figure 16-15 shows a 50% duty cycle, and Figure 16-16 the maximum duty
cycle.

Figure 16-14. PWM Motor Control (Minimum Duty Cycle)

16.8 Control Motor Speed | 307

Figure 16-15. PWM Motor Control (50% Duty Cycle)

Figure 16-16. PWM Motor Control (Maximum Duty Cycle)

See Also
To use PWM outputs from an Arduino or Raspberry Pi, see Recipe 13.2.

16.9 Apply PWM to an Analog Signal
Problem
You have an analog signal that you want to PWM.

308 | Chapter 16: Analog

Solution
Use an NE555 timer in the configuration shown in Figure 16-17.

The analog signal must be between 0 and VCC and is applied to the CONT (control)
pin of the IC. The Clock signal should be at the modulation frequency and can be
provided by another NE555 timer in a stable configuration as described in Recipe
16.5. Rather than using a separate chip to provide the clock, you can use an NE556,
which contains the equivalent of two NE555s in one package.

Figure 16-17. PWM of an Analog Signal Using an NE555 Timer

Discussion
The NE555 is configured as a monostable whose pulse length is determined by R1,
C1, and the voltage at CONT. This monostable fires every time the TRIG pin pulses
in response to the modulation clock.

R1 and C1 set the maximum pulse length, which should be timed to be one wave‐
length of the clock.

For example, if the clock frequency is 30kHz, the period length is:

1/30k = 33.3µs

The maximum pulse length Tmax (see Recipe 16.7) is:

Tmax = 1.1 R1 C1

So, an R1 of 470Ω and a C1 of 100nF would give a Tmax of:

1.1 × 270 × 100n = 29.7µs

This would allow the full voltage range of 0 to 5V to be modulated as PWM.

16.9 Apply PWM to an Analog Signal | 309

The use of two NE555 ICs (or a single NE556) configured as an oscillator providing a
clock with the second configured as a monostable is an alternative to Recipe 16.8
for using PWM top-control power to a load. In such a case, the CONT pin could be
connected to the slider of a pot connected between 5V and GND to control the pulse
width.

See Also
Creating a PWM output signal is the first step in class-D digital amplification (see
Recipe 18.5).

To control power to say a motor or other load, see Recipe 16.8.

16.10 Make a Voltage-Controlled Oscillator (VCO)
Problem
You want to create an oscillator whose frequency depends on a control voltage.

Solution
Use an NE555 configured as an astable and use the CONT pin voltage to control the
switching thresholds and hence the frequency. This arrangement is shown
in Figure 16-18.

Figure 16-18. Using an NE555 as a VCO

Discussion
VCOs are standard building blocks in analog audio synthesizers, where the output of
a low-frequency oscillator can be used to modulate the audio frequency of a VCO.

310 | Chapter 16: Analog

This VCO design operates over a fairly limited range of frequencies. Using a 5V
supply and values of R1 = 1kΩ, R2 = 10kΩ, and C1 = 10nF the plot of Figure 16-19
shows how the frequency varies with the control voltage.

Figure 16-19. Frequency Against Control Voltage

The useful control voltage range is between about 3 and 5V in this example. Oscilla‐
tion stopped completely below 1.8V.

See Also
For the use of a VCO in an FM transmitter, see Recipe 19.1.

16.11 Explore Decibel Measurement
Problem
You have seen the unit decibel (dB) and want to know what it means.

16.11 Explore Decibel Measurement | 311

Solution
The term “decibel” is not strictly speaking a unit of anything, but rather a way of
expressing ratios that is suitable for properties such as sound whose perception by
humans is logorithmic. That is, for a sound signal to sound a little bit louder, you
might need to double the amplitude (voltage).

That is why a 1W amplifier can provide a reasonable volume of sound, but if you
need more volume, then rather than take the next step to 2W of output power, you
might jump straight to 10W and then on to 100W.

A positive value of dB represents amplification of a signal and a negative dB attenua‐
tion (reduction in amplitude) of a signal.

A gain expressed in dB can either apply to voltage (amplitude) or to power, the power
being proportional to the amplitude squared. The unit dB is most commonly used
with amplitude, in which case the gain is as follows (log is log to the base 10):

gain = 20log
Vout
Vin

Figure 16-20 shows various common ratios and the dB equivalents.

Figure 16-20. Gain and Attenuation of Amplitude Expressed in dB and as a Ratio

312 | Chapter 16: Analog

A gain of 0dB means the output is exactly the same amplitude as the input. A gain of
+6dB means a doubling of the amplitude and –6dB an attenuation of the signal
by half.

Table 16-3 shows some common dB ratios and what they mean in terms of amplifica‐
tion or attenuation of both amplitude (voltage) and power.

Table 16-3. dB Amplifications and Attenuations for Amplitude and Power

dB Amplitude (Voltage) Power

100 gain of 100,000 gain of 10,000,000,000

80 gain of 10,000 gain of 100,000,000

60 gain of 1,000 gain of 1,000,000

40 gain of 100 gain of 10,000

20 gain of 10 gain of 100

10 gain of 3.162 gain of 10

6 gain of approx. 2 gain of 3.981

3 gain of 1.413 gain of approx. 2

0 no change no change

–3 attenuation of 1.413 attenuation of approx. 2

–6 attenuation of approx. 2 attenuation of 3.981

–10 attenuation of 3.162 attenuation of 10

–20 attenuation of 10 attenuation of 100

–40 attenuation of 100 attenuation of 10,000

–60 attenuation of 1,000 attenuation of 1,000,000

–80 attenuation of 10,000 attenuation of 100,000,000

–100 attenuation of 100,000 attenuation of 10,000,000,000

Discussion
The term decibel is often used to express the loudness of a sound. Strictly speaking
this should be called dBA (decibels Absolute) and relates to the energy in the pressure
wave at the point where it is produced, and is an absolute value not a ratio.

See Also
Wikipedia has a useful description of decibels as a unit of gain at http://bit.ly/2lPeant.

16.11 Explore Decibel Measurement | 313

http://bit.ly/2lPeant

CHAPTER 17

Operational Amplifiers

17.0 Introduction
Operational amplifiers, or more commonly known as op-amps, have a helpful way of
making theory easy to implement. If you need to make a filter or preamplifier, an op-
amp is often the best solution.

An op-amp has two inputs and one output and is represented in schematic diagrams
(Figure 17-1) as a triangle with the output coming from one apex and the two inputs
labeled + and – on the opposite side. They also need positive and negative power con‐
nections. They are available in a variety of IC packages with 5, 6, or 8 pins. ICs are
also available that contain two or four op-amps in a single package.

Figure 17-1. Schematic Symbol for an Op-Amp

Op-amps amplify the difference between the + and – inputs. The gain of an amplifier
will generally be millions or even billions. So the output voltage may be 1,000,000

315

times the difference between the input voltages. Such a high gain may sound desira‐
ble, but it is actually too high to do anything useful with. To reduce the gain to a more
manageable level, an op-amp is almost always used with negative feedback where
some of the output is fed back to the negative input. You will find examples of using
feedback in this way in Recipe 17.4 and Recipe 17.5. In Recipe 17.6 you will see how if
all of the output is fed back to the negative input the output will follow the positive
input to the op-amp rather like the emitter-follower described in Recipe 16.4.

Traditionally op-amps are powered with a split power supply that has positive and
negative supply voltages (Recipe 17.2) in addition to GND in the middle. However,
the prevelance of microcontrollers with single 3.3V or 5V supplies has led to many
op-amps being capable of single-supply operation (Recipe 17.3).

An op-amp IC is much better than a discrete-transistor design in most situations,
providing a lower component count and generally excellent performance. Special
types of op-amps are available for different power supply, frequency, and noise
requirements.

17.1 Select an Op-Amp
Problem
Look at any online component catalog and you will find literally thousands of models
of op-amps. You want to select the right one for your project.

Solution
Here I have tried to simplify this enormous choice to a small set of readily available
devices to suit all applications.

Factors that you need to consider include:

• Price
• Power supply range
• Whether you need the outputs and inputs to be able to reach the full supply

range (rail to rail)
• Speed. The gain bandwidth product is the frequency at which the gain of the op-

amp (without any feedback) will drop to 1.
• Output slew rate. The maximum rate at which the output can increase.
• Common mode rejection (CMR). A op-amp amplifies the difference between its

two inputs, and the CMR of an op-amp is the degree to which any simultaneous
changes to both inputs are ignored. This is measured in decibels (see Recipe
16.11).

316 | Chapter 17: Operational Amplifiers

• Noise. All electronic circuits generate a small amount of noise. This can cause
problems with very weak signals, so sometimes in high gain applications low-
noise op-amps are necessary.

• Supply current. Some op-amps operate at such low currents that they are suitable
for long-term battery use. Some op-amps also have a power-down or standby
mode that allows them to be virtually switched off. For example, a microcontrol‐
ler might do this before putting itself to sleep to save battery power.

• Output current. Sometimes a high output current from an op-amp can be useful
to directly drive a small load.

• Number of op-amps per package. Op-amps are available in packages that contain
1 to 4 op-amps in a single package. If you have a circuit that uses multiple op-
amps, this can save space and money in your design.

A good selection of devices to start from are listed in Table 17-1.

Table 17-1. Selecting the Right Op-Amp

 LM741 LM321 TLV2770 OPA365

Description Perhaps the
longest-lived and
most popular op-
amp.

A good high-supply
voltage device
capable of single-
supply operation.

A single-supply low-
voltage device with a
standby, low-current
mode.

A high-performance,
low-voltage, low-noise
device. SMD only.

Guide cost $0.50 $0.70 $2 $2

Supply voltage range ±10–22V 3–30V 2.5–5.5V 2.2–5.5V

Rail to rail N N Y Y

Gain bandwidth product 1MHz 1MHz 5.1MHz 50MHz

Slew rate 0.5V/µs 0.4V/µs 10V/µs 25V/µs

Common mode rejection 96dB 85dB 86dB 120dB

Noise (nV/√Hz) Not specified 40 17 4.5

Supply current 1.7mA 0.7mA 1mA (1µA standby) 4.6mA

Output current 25mA 20mA 50mA 65mA

Dual-amp package LM747 LM358 TLV2773 OPA2385

Quad-amp package LM148 LM324 TLV2775 Not available

Discussion
There will be times when you need to step out from the selections in Table 17-1 for
some particular application. Perhaps you need an op-amp that works at high frequen‐
cies, but has a high upper supply voltage. In such cases, there will almost certainly be
a device that fits the niche, but to find it, you will need to do some searching on the
internet for recommendations and then carefully inspect the datasheets.

Note that not all op-amps have the same pinout. See Appendix A for pinouts for the
op-amps described in this recipe.

17.1 Select an Op-Amp | 317

See Also
Take a look at the datasheets for the op-amps featured in this recipe:

• 741
• LM321
• TLV2770
• OPA365

You will also find an op-amp used in Recipe 18.3.

17.2 Power an Op-Amp (Split Supply)
Problem
You need a power supply suitable for powering an op-amp such as the LM741, which
requires a split-supply with positive, negative, and ground.

Solution
Use a regulated supply or batteries, or both. In any case, use a linear voltage regulator
rather than a switching regulator. The current consumption of an op-amp is low
enough that power-supply efficiency does not need to be considered.

If you are operating the op-amp with a split power supply, you can use positive and
negative versions of a linear regulator as shown in the ±12V supply shown in
Figure 17-2.

Figure 17-2. A Split 12V Regulated Supply

Op-amps benefit greatly from the use of decoupling capacitors (see Recipe 15.1). If
you have an undemanding application, a single 100nF capacitor placed close to the

318 | Chapter 17: Operational Amplifiers

http://www.ti.com/lit/ds/symlink/lm741.pdf
http://www.ti.com/lit/ds/symlink/lm321.pdf
http://www.farnell.com/datasheets/1962331.pdf
http://www.ti.com/lit/ds/symlink/opa2365.pdf

op-amp IC will be just fine. For more demanding applications where you have a lot of
gain, it is common to use both a 100nF and 10µF capacitor next to each other and
close to the IC body.

Discussion
The positive side of the supply is as described in Recipe 7.4, but in this case, in addi‐
tion to a 78L12 (L for low-power) to regulate the positive side of the supply, a 79L12
negative voltage regulator is used to regulate the negative side of the supply.

See Also
Although a split supply like this is quite common in audio and scientific instruments,
in general, it is more convenient to use a single supply as described in Recipe 17.3.

17.3 Power an Op-Amp (Single Supply)
Problem
You want to use an op-amp with a single-supply voltage, but also need to provide a
reference voltage midway between the supply rails.

Solution
Figure 17-3 shows a common way of providing a 5V regulated supply and a 2.5V ref‐
erence voltage using a voltage divider and capacitor. The capacitor C3 stabilizes the
voltage further, making it less likely to be influenced by changes in the current flow‐
ing through the reference voltage.

Figure 17-3. Providing a Center Voltage for Single-Supply Operation of an Op-Amp

As you will see in Recipe 17.4 and Recipe 17.5 nearly all op-amp circuits need this
middle reference voltage to provide negative feedback to reduce the op-amp’s gain.

17.3 Power an Op-Amp (Single Supply) | 319

Discussion
To improve this and provide a stable center voltage use a voltage divider and capaci‐
tor with a unity gain buffer as described in Recipe 17.6. If you have a design that uses
several op-amps, you will often find that there is a “spare” op-amp in a quad op-amp
package that can be used for this purpose.

See Also
To power an op-amp using a split-voltage supply, see Recipe 17.2.

17.4 Make an Inverting Amplifier
Problem
You need a simple op-amp amplifier and it does not matter that the signal output will
be the inverse of the input.

Solution
Connect up your op-amp as shown in the schematic in Figure 17-4, which shows the
arrangement assuming a split ±12V supply.

Figure 17-4. An Inverting Amplifier

Without any feedback from the output of an op-amp to its input, the gain of the op-
amp will be millions or billions, which is far too high to do anything useful other than
amplify noise. This circuit uses R1 and R2 to reduce the gain of the op-amp to a rea‐
sonable level. A reasonable level is a factor between 10 and 10,000. If you need more
gain than this, you will need to use multiple stages of amplification as well as some
filtering to avoid amplifying unwanted noise.

The voltage gain of the circuit is set by the formula:

gain =
Vout
Vin

= −
R2
R1

320 | Chapter 17: Operational Amplifiers

So if we want our amplifier to have a gain of –10 (times 10 but inverted), we could
choose a value for R2 of 10kΩ and of R1 of 1kΩ. That way when we put +1V at IN,
OUT would have a voltage of –10V. Conversely, if we put –0.1V at IN, OUT would be
+1V.

If you want to use a single 5V supply, the same principle applies, but now the amplifi‐
cation takes place relative to the center voltage of 2.5V. Figure 17-5 shows the sche‐
matic for using a 5V regulated supply with an OPA365 rail-to-rail single-supply op-
amp.

Figure 17-5. Single-supply Inverting Amplification with an Op-Amp

With single-supply operation, the voltage at IN must be between 0 and 5V and the
amplification is relative to the center voltage of 2.5V. This means that if the voltage at
IN is 2.5V then OUT will also be 2.5V, but if IN is 2.6V (0.1V higher than 2.5V) then
OUT will be at 1.5V (1V less than 2.5V).

So, the formula to calculate Vout for any given Vin in the schematic in Figure 17-5 is:

Vout = 2 . 5 − Vin
R2
R1

+ 2 . 5

Discussion
No matter what the gain of your amplifier is, the op-amp’s output cannot exceed that
of the supply voltages. A rail-to-rail op-amp will allow the voltage to swing from one
supply to another but not beyond, but a non–rail-to-rail type op-amp may only allow
you to get within a volt or two of the supply voltages.

See Also
Recipe 17.5 shows a noninverting op-amp configuration.

17.4 Make an Inverting Amplifier | 321

17.5 Make a Noninverting Amplifier
Problem
You want to amplify the voltage of a signal, without inverting it.

Solution
Use an op-amp in the noninverting configuration of Figure 17-6.

In this case, the gain of the amplifier is given by the formula:

gain =
Vout
Vin

= 1 +
R2
R1

Figure 17-6. A Noninverting Op-Amp Amplifier

If we used a 10kΩ resistor as R2 and a 1kΩ resistor as R1, the gain would be 11. In
other words, the voltage at OUT would be 11 times the voltage at IN. If the voltage at
IN is negative, the voltage at OUT will also be negative.

In the case of single-supply operation of the amplifier, let’s say 5V, we have the same
2.5V offset to contend with as we did in Recipe 17.4. Figure 17-7 shows how you
might build a single-supply noninverting amplifier.

In this case, the gain is still:

gain =
Vout
Vin

= 1 +
R2
R1

322 | Chapter 17: Operational Amplifiers

And the output voltage is related to the input voltage by the equation:

Vout = Vin − 2 . 5 1 +
R2
R1

+ 2 . 5

Figure 17-7. Single-supply Noninverting Amplification with an Op-Amp

Discussion
The amplifiers described thus far are capable of amplifying both a DC signal (say
from a sensor) and AC-changing signals (perhaps an audio signal). A single-supply
5V (or even 3.3V) design like this is ideally suited to connecting the output to the
analog input of a microcontroller, as the voltage can swing between 0V and the sup‐
ply voltage. In such cases, it is conceptually easier to deal with amplification of a volt‐
age without the added complication of the amplified voltage being inverted about
2.5V, so it is more common to use this noninverting recipe in single-supply designs.

See Also
See Recipe 17.4 for inverting amplifier designs.

17.6 Buffer a Signal
Problem
You need to buffer a signal; that is, you don’t want to amplify or attenuate the signal at
all, but effectively give it a low output impedance so that it is not affected significantly
by loading.

17.6 Buffer a Signal | 323

Solution
Configure the op-amp as shown in Figure 17-8.

Figure 17-8. A Unity Gain Buffer

The output voltage will track the input voltage. So if the input is 1V, the output will
also be 1V. You can then hang whatever load you like off the output, without worry‐
ing too much about it affecting the input.

In other words, the voltage is not being amplified but the current that can pass
through a load is greatly increased. An example where this might be used is as a head‐
phone amplifier where the signal voltage is high enough in theory to drive the head‐
phones, but the output would not otherwise be sufficient to power the low impedance
of the headphones.

Discussion
One situation where a buffer like this can be used is to provide the center voltage for a
single-supply op-amp amplifier. Figure 17-9 shows a 5V single supply amplifier
modified from Figure 17-7 to use a buffer in this way.

Figure 17-9. Using a Unity Gain Buffer to Provide the Center Voltage for a Single-Supply
Noninverting Amplifier

324 | Chapter 17: Operational Amplifiers

Because the input impedance to the buffer is very high, the value of C3 can be
reduced as very little current at all will be flowing out of it. Think of it as reducing
ripple on an unloaded power supply.

See Also
Another way to think of the action of a unity gain buffer is as a current amplifier,
which is like using a bipolar transistor in an emitter-follower configuration in Recipe
16.4.

17.7 Reduce the Amplitude of High Frequencies
Problem
You want a low-pass filter to reduce the amplitude of high frequencies, but you need
it to have a steeper cutoff than the simple RC filter of Recipe 16.3.

Solution
Use an op-amp and a 2-pole filter.

As an example, let’s say we want to revisit the crude filter you saw in Recipe
16.3 designed to separate a 440Hz signal from a 32.7kHz PWM carrier frequency. In
that simple RC filter, we ended up with a corner frequency of 1.786kHz and saw that
there would be a halving of signal amplitude for each doubling of the frequency. This
resulted in a reduction in the amplitude of about a factor of 16 at 32kHz. By using an
active filter, the attenuation (fall-off) at 32kHz can be improved to a factor of 100
easily.

When selecting component values for R1, R2, and C2, you can do a whole load of
complicated math by hand, or you can use a filter design tool. In this recipe, we will
use the Analog Filter Wizard provided by the chip manufacturer Analog Devices
available as an online tool at http://www.analog.com/designtools/en/filterwizard/.

When you navigate to that page in your browser, you will be offered the choice of
low-pass, high-pass, or band-pass. When you select low-pass, you will be given the
opportunity to specify the corner frequency and other parameters for the filter as
shown in Figure 17-10.

Logarithmic Scales
At first sight, the frequency scale of Figure 17-10 looks a little strange as the frequen‐
cies 1kHz, 10kHz, and 100kHz are each the same distance apart. That is, the distance
along the axis from 1kHz to 10kHz is the same as the distance from the much bigger
range of frequencies from 10kHz to 100kHz. Also, the vertical lines are not evenly

17.7 Reduce the Amplitude of High Frequencies | 325

http://www.analog.com/designtools/en/filterwizard/

spaced, but far apart at first, getting closer as they approach the next marked fre‐
quency.

This is because in Figure 17-10 and for that matter in Figure 17-12 and Figure 17-15
the frequency scales are logarithmic. That is, to be able to see the full shape of the
curve for such a wide range of frequencies, the scale is distorted in length based on
the log (base 10) of the frequency.

Looking at the area of the scale around 1kHz, the next vertical line is 2kHz and the
one after that 3kHz, gradually getting closer together as they approach 10kHz.

If you tried to plot Figure 17-10 without using a logarithmic frequency scale, the plot
would just look like the edge of a cliff. You would not be able to see the details of the
frequency response as well as with a log plot.

Figure 17-10. Specifying a Filter in the Analog Filter Wizard

The tool is by default configured to work in units of dB (see Recipe 16.11). You can
change this to just the amplitude voltage as a ratio by changing the drop-down lists
under Passband and next to View to both be V/V as shown in Figure 17-10, where

326 | Chapter 17: Operational Amplifiers

the corner frequency has been set to 1.78kHz and the desired stop-band set to –40dB
(factor of 1/100) at 32kHz.

Use the filter-response slider to determine just how steep the curve will be as well as
how flat the pass-band’s response is. This will also alter the number of op-amps
needed for the design (stages) and the order of the filter. A single op-amp can imple‐
ment a second-order filter. More orders than that and you will need to chain together
several op-amps. The filter type (Butterworth, Chebyshec, or Bessel) will all use the
same schematic but different component values to provide different behaviors. See
the discussion section for the differences.

For the sake of this example, position the slider so that the second-order Butterworth
(first stage) is recommended by the tool and then click Go to Component Selection
and “presto,” a schematic complete with component values will be recommended to
you as shown in Figure 17-11.

Figure 17-11. Filter Design Complete with Component Values

You can then specify supply voltages and other properties of your design as well as
look at the effect of component accuracy on the design. Since this is an Analog Devi‐
ces tool, it will obviously recommend the op-amps they manufacture, but the designs
can be used with other manufacturers’ op-amps.

There is nothing to stop you from adding some gain to your filter so that it both fil‐
ters and amplifies by replacing the connection from the op-amp output to the nega‐
tive input with a pair of resistors as used in the noninverting amplifier design

17.7 Reduce the Amplitude of High Frequencies | 327

of Recipe 17.5. In fact, the design tool does allow you to specify a gain when you are
specifying the filter (see Figure 17-10).

Discussion
Unless you have a particularly demanding project, a second-order filter using a single
op-amp will generally provide a good balance between complexity and performance.
There are whole books written on filter design and other more complex filter design
tools.

The properties of the three filter types offered by the Analog Filter Wizard are:

Butterworth
A very flat response (the gain remains the same) for the pass-band before you get to
the corner frequency, but the transition from pass-band to stop-band is not as steep
as for other filter types. Butterworth filters introduce a frequency-dependent phase-
shift between the input and output signals, which leads to distortion of the original
signal.

Chebyshev
Has some gain ripples in the pass-band, but provides a much steeper transition from
pass-band to stop-band, although it also suffers from phase-shift.

Bessel
Has very little phase-shift at the expense of an even less steep transition from pass-
band to stop-band.

These types are all implemented using the same schematic in Figure 17-11; the calcu‐
lations performed by the Analog Filter Wizard determine the type of filter.

See Also
For other types of filter designs, see the next few recipes.

17.8 Filter Out Low Frequencies
Problem
You want to make an active filter that will discard low frequencies and leave higher
frequencies unaltered.

Solution
Use a second-order filter implemented using a single op-amp and design it using a
design tool such as the Analog Filter Wizard. Figure 17-12 shows the frequency

328 | Chapter 17: Operational Amplifiers

response of a filter designed by the Analog Filter Wizard to provide high-pass filter‐
ing with a gain of 10 and a corner frequency of 1kHz.

Notice that there is a little “hump” in the response between 2kHz and 3kHz where the
gain goes above the desired value of 10. This is called overshoot and is another charac‐
teristic of Chebyshev filters.

Figure 17-12. Frequency Response of a Second-Order Chebyshev High-pass Filter

The corresponding schematic for this filter is shown in Figure 17-13.

Discussion
Most of the things said in the discussion section of Recipe 17.7, especially about the
different types of filters, apply equally well to high-pass filters.

Notice that in Figure 17-13 the Analog Filter Wizard has also helpfully suggested the
necessary bypass capacitor values (Recipe 15.1).

See Also
For a low-pass filter see Recipe 17.7 and for a band-pass filter see Recipe 17.9.

17.8 Filter Out Low Frequencies | 329

Figure 17-13. Schematic of a Second-Order Chebyshev High-pass Filter

17.9 Filter Out High and Low Frequencies
Problem
You want a filter that attenuates frequencies outside of the range of frequencies that
you want to keep.

Solution
If the band of frequencies you are interested in is reasonably wide, then the best
solution is to simply pass the signal through a low-pass filter (Recipe 17.7) and then
a high-pass filter (Recipe 17.8.) This will require two op-amps, but then dual op-
amp ICs are not much more expensive than single op-amp ICs.

Figure 17-14 shows the schematic for a band-pass filter with corner frequencies of
20Hz and 20kHz, which might be used to restrict a signal to the audio-frequency
range.

330 | Chapter 17: Operational Amplifiers

Figure 17-14. A Band-Pass Filter

The filter was designed using the Analog Filter Wizard used in Recipe 17.7 and
Recipe 17.8. This time the filter type of Band-pass is selected and the parameters
entered as shown in Figure 17-15.

Figure 17-15. Designing a Band-pass Filter Using the Analog Filter Wizard

The pass-band is set to 20kHz for a 3dB drop in amplitude (0.71 of the original
amplitude) and the stop-band to 100kHz at the high end where we are aiming for
attenuation of 20dB (0.1 of original signal amplitude).

17.9 Filter Out High and Low Frequencies | 331

The center frequency is not the 10kHz that you might expect but rather the square
root of the product of the upper- and lower-corner frequencies. In other words:

20 × 20, 000 = 632Hz

Discussion
Filter design is a specialized field, and in this book, there is only room to look at the
most common electronics recipes. However, for many applications a simple design
that uses a single op-amp stage will be perfectly adequate.

Q-Factor
The Q or “quality” factor of a band-pass filter is an indication of the narrowness of
the band and is the ratio of the center frequency of the band to its bandwidth. The
filter’s bandwidth is the band that is passed without attenuation of more than 3dB.

For example, a filter with a center frequency of 10kHz and a bandwidth of 5kHz will
have a Q factor of 2.

See Also
For low-pass active filter design see Recipe 17.7 and for high-pass filter design
see Recipe 17.8.

17.10 Compare Two Voltages
Problem
You want to compare two voltages and switch a load if one voltage is higher than the
reference voltage.

Solution
Use a device closely related to the op-amp called a comparator. Figure 17-16 shows
how you could make a simple automatic light that turns on an LED when the light
level falls below a certain threshold.

R1 and R3 form a voltage divider whose output corresponds to the light level; that is,
the higher the volate, the higher the light level. The variable resistor R2 is used to set
the reference voltage at IN–.

The output of the LM311 provides optimal flexibility by providing connections to
both the emitter and collector of the NPN output transistor.

332 | Chapter 17: Operational Amplifiers

Figure 17-16. Using a Comparator to Control an LED

If the light level is low enough for IN+ to be lower than IN– the base of the output
transistor is supplied with current, and since the emitter is grounded, the transistor
turns on and current flows through the LED.

This logic of the transistor being on if IN+ is lower than IN– would seem to be coun‐
terintuitive, but the output transistor will often have its emitter grounded and the
logic output taken from the collector, which is pulled up to VCC. This effectively acts
as an inverter and hence the collector output will be high if IN+ is greater than IN–.

Discussion
You can use an op-amp as a comparator, but it is better to use a special-purpose com‐
parator IC because it will generally have a higher output current drive and voltage
range.

See Also
To sense light using an Arduino, see Recipe 12.3 and for a Raspberry Pi Recipe 12.6.

17.10 Compare Two Voltages | 333

CHAPTER 18

Audio

18.0 Introduction
Audio electronics is all about generating signals and amplifying them enough to
power a loudspeaker so that you can hear them.

This chapter contains a number of amplification and signal-generation recipes. Any
resource that deals with audio-power amplifier design will explain the different
classes of amplifiers, which are designated by A, B, AB, and D, and some other more
exotic designs. For the most part, these letters designate how the amplifier is con‐
structed from bipolar junction transistors and how they are biased. Since these days
there is no real cost or even quality advantage (apart from the most demanding
audiophile) to building an amplifier from separate transistors rather than just using
an IC, I feel it is only necessary here to highlight the most common designs along
with their main characteristics:

Class A
Low distortion but very inefficient, produces a lot of heat.

Class B and AB
A push-pull design. More distortion than A but much more efficient. AB is the same
as B but with compensation to reduce the distortion when the amplifier switches over
from pushing the loudspeaker to pulling it (see Recipe 18.4)

Class D
Digital amplifier. Higher distortion than A or B but very energy efficient (see Recipe
18.5)

335

Before launching into the construction of your own amplifier designs, think about
whether you need to build the amplifier from scratch. For most one-off projects, it is
easier and cheaper to use ready-made modules or even USB-powered amplified
speakers.

When it comes to generating sound waves from an Arduino, you can easily generate
tones. The Raspberry Pi with its large amount of memory and sophisticated hardware
allows MP3 and other sounds files to be played through its audio jack, which can then
be connected to an external amplifier.

18.1 Play Sounds on an Arduino
Problem
You want to know how to generate sounds from an Arduino and play them through a
loudspeaker.

Solution
You can experiment with generating tones and driving a speaker from an Arduino if
you connect a speaker to an Arduino as shown in Figure 18-1.

Figure 18-1. Generating Sound with an Arduino

The sketch ch_18_speaker can be found with the downloads for the book (see Recipe
10.2):

const int outputPin = 10;

void setup()
{
 pinMode(outputPin, OUTPUT);
 Serial.begin(9600);
 Serial.println("Enter frequency 100-8000 Hz (0 off)");
}

void loop()

336 | Chapter 18: Audio

{
 if (Serial.available())
 {
 int f = Serial.parseInt();
 if (f == 0) {
 noTone(outputPin);
 }
 else {
 tone(outputPin, f);
 }
 }
}

The Arduino tone function takes two parameters, the pin to generate a tone on and
the frequency of the tone to generate as a long integer value. The tone function can
generate frequencies from 31Hz to 65,535Hz.

To use it, open the Arduino Serial Monitor and make sure you have the Line Ending
drop-down list set to “No line ending” then type in a frequency in Hz and click Send.

The 5V signal generated by the tone command is a little too high a voltage to feed
directly into an amplifier. It should be reduced to below 2V or so using a pair of resis‐
tors as a voltage divider. 1kΩ and 270Ω resistors with the 270Ω resistor to GND will
reduce the output by a factor of about 5.

Loudspeakers
Figure 18-2 shows the structure of a loudspeaker.

There are two main parts of a loudspeaker: the frame that holds everything in place
and the cone that moves back and forth to create the pressure waves in the air that we
hear as sounds.

The frame includes a fixed magnet and the cone, which has a coil of wire wound
around the narrow end. Flexible wires link the coil to terminals on the frame. When a
current passes through the coil it causes movement in the cone relative to the fixed
magnet, producing pressure waves in the air.

Speakers that produce a reasonable amount of sound are quite high power, often tens
of watts. In order to avoid the dangers of having to use high voltages to drive loud‐
speakers, they are usually low resistance. 8Ω is a common value and even 4Ω speakers
are quite common, especially in cars where only 12V DC is available.

18.1 Play Sounds on an Arduino | 337

Figure 18-2. The Structure of a Loudspeaker

Discussion
A loudspeaker is an inductive load, so, like the coil of a relay, there is a risk of voltage
spikes arising that could damage the GPIO pin driving the speaker. In reality, when
using a small speaker driven through a resistor, these spikes will be sufficiently low in
energy for the antistatic protection of the GPIO pin to take care of them.

Making crude square-wave buzzing has its place, but the Arduino is actually capable
of more sophisticated sound generation using the Mozzi library, which uses a high-
frequency PWM signal at 32.7kHz to generate the sound file using PWM.

To try out Mozzi and hear the difference between the square and sinewaves, install
the Mozzi library and then run the example program included with the Mozzi library
01. Basics→Sinewave.

You will need to change the connection to R1 from Arduino pin 10 to pin 9 that is
used by Mozzi.

If you want to know how Mozzi sounds are generated skip ahead to Recipe 18.1.

See Also
For using a voltage divider, see Recipe 2.6.

338 | Chapter 18: Audio

http://sensorium.github.io/Mozzi/

For oscillator recipes that do not require an Arduino, see Recipe 16.2, Recipe 16.5,
and Recipe 16.6.

To generate better-sounding audio from an Arduino, take a look at the Arduino
Mozzi library.

18.2 Play Sound with a Raspberry Pi
Problem
You want to play a sound using the Raspberry Pi’s audio jack.

Solution
When it comes to hardware, most models of Raspberry Pi have a 3.5mm headphone-
style jack socket that can be attached to a stereo amplifier and speakers.

In recent versions of Raspbian, you will find the OMXPlayer preinstalled. To play a
sound file, you just need to name the sound file you want to play OMXPlayer. For
example:

$ omxplayer file.mp3

If you need to play the sound file from within a Python program you can use the
os.system command to run OMXPlayer, as follows:

import os
os.system('omxplayer file.mp3')

Discussion
In addition to the headphone jack, sound can also be played through the HDMI con‐
nector. The OMXPlayer software should automatically play through HDMI unless
the audio jack has something plugged into it.

You can choose the channel the sound should be played through by using the -o
option, which can have a value of either local (audio socket) or hdmi. For example:

$ omxplayer -o hdmi file.mp3

See Also
You can find out more about the OMXPlayer here: http://elinux.org/Omxplayer. In
addition to sound files in most formats, the player can also play video files.

For an alternative method of playing sound files using the Pygame library, see http://
bit.ly/2mt4eDM.

18.2 Play Sound with a Raspberry Pi | 339

http://sensorium.github.io/Mozzi/
http://sensorium.github.io/Mozzi/
http://elinux.org/Omxplayer
http://bit.ly/2mt4eDM
http://bit.ly/2mt4eDM

The Raspberry Pi Zero does not have an audio jack, but you can still use it to play
audio; see http://bit.ly/2mIjZH9 for details.

18.3 Incorporate an Electret Microphone Into a Project
Problem
You need a preamplifier for an electret microphone, either for further amplification
to use speakers (power amplifier) or for detecting sound levels with an Arduino.

Solution
Use a single-supply rail-to-rail op-amp like the OPA365 and amplify the signal by a
factor of between 30 and 100. A gain of 30 is about right if you will be speaking
directly into the microphone and 100 if you want the microphone to be useful in
picking up ambient sounds.

Figure 18-3 shows the schematic for the microphone preamp with a gain of 101. For a
discussion of how to set the gain, see Recipe 17.5.

Figure 18-3. An Electret Microphone Preamplifier

C1 is used to “AC couple” the weak output from the microphone to the noninverting
input of the op-amp. It allows only the AC part of the signal from the mic, rejecting
the DC bias that would otherwise be present.

Discussion
Electret microphones operate like capacitors. Sound waves effectively move one plate
of the capacitor closer or further away. The plates of the electret are charged during
manufacture and retain that charge for the life of the microphone. These changes in
capacitance are converted into a small voltage using an FET transistor built into the

340 | Chapter 18: Audio

http://bit.ly/2mIjZH9

microphone. The microphone module is polarized and must be connected the right
way around. You also need to supply a drain resistor for the FET (R5 in Figure 18-3).

The circuit of Figure 18-3 will produce an output centered around 2.5V that can be
connected directly to an Arduino’s analog input and allow you to do things like meas‐
ure the maximum sound level.

Figure 18-4 shows the circuit used with an Arduino Uno.

Figure 18-4. An Arduino Sound-Level Meter

This circuit can be built on a breadboard, but the OPA365 is only available as an
SMD, so you will need to use a SOT-23 or SOIC breakout board such as the one from
Schmartboard.com, as shown in Figure 18-5.

The Arduino sketch ch_18_sound_meter (see Recipe 10.2) samples the analog input
A0 for 100ms and then reports on the maximum amplitude it sampled (Figure 18-6).
You could modify this sketch to trigger some action if the sound level rises above a
certain level.

Note that the maximum possible reading will be 512 (half the full analog value read‐
ing):

const int soundPin = A0;
const long samplePeriod = 100; // ms

long lastSampleTime = 0;
int maxAmplitude = 0;
int n = 0;

void setup() {
 Serial.begin(9600);
}

18.3 Incorporate an Electret Microphone Into a Project | 341

void loop() {
 long now = millis();
 if (now > lastSampleTime + samplePeriod) {
 processSoundLevel();
 n = 0;
 maxAmplitude = 0;
 lastSampleTime = now;
 }
 else {
 int amplitude = analogRead(soundPin) - 512;
 if (amplitude > maxAmplitude) {
 maxAmplitude = amplitude;
 }
 n++;
 }
}

void processSoundLevel() {
 // replace or add your own code to use maxAmplitude
 Serial.print("Of ");
 Serial.print(n);
 Serial.print(" samples, the maximum was ");
 Serial.println(maxAmplitude);
}

Figure 18-5. Using an SMT OPA365 on a Breadboard

342 | Chapter 18: Audio

Figure 18-6. Serial Monitor Reporting Sound Level

See Also
Ready-made microphone preamplifier modules are available that use electret micro‐
phones, for example: https://www.sparkfun.com/products/12758.

Alternatively, you can use the type of microphone found in cellphones called MEMS
(microelectromechanical systems). These are essentially microphones on a chip.
SparkFun and others sell breakout boards for these extremely tiny microphones, such
as this one: https://www.sparkfun.com/products/9868.

For information on using analog inputs with an Arduino, see Recipe 10.12.

18.4 Make a 1W Power Amplifier
Problem
You need a low-cost power amplifier to power a small speaker at low volumes, say to
accompany an FM radio receiver as in Recipe 19.3.

Solution
Use a power-amp IC like the TDA7052, which will work with any power supply from
3V to 15V and can supply 1W of power into an 8Ω speaker. The schematic for a sim‐
ple amplifier using this device is shown in Figure 18-7.

18.4 Make a 1W Power Amplifier | 343

https://www.sparkfun.com/products/12758
https://www.sparkfun.com/products/9868

Figure 18-7. Using the TDA7052 1W Linear Power Amplifier

R1 and R2 are only provided to show how to mix the left and right signals of a stereo
audio source to mono. If you have a mono source, just connect it directly to C3.

R3 acts as a volume control, and if the sound source has a volume control, you can
replace this with two fixed resistors acting as a voltage divider.

C1 and C2 provide energy stores for the rapidly changing load of the IC as it drives
the speaker. C1 should be placed as close to IC1 as possible.

Discussion
Figure 18-8 shows how you can build an amplifier like this on a solderless bread‐
board. In this case, the breadboard is stuck to a Monk Makes Protoboard for the con‐
venience of being able to attach the speaker to screw terminals and use the audio jack
and power jack.

What Counts as a “Power” Amplifier?

1W is not very powerful compared with the 20W or more you will
generally find in a home stereo system. An amplifier is generally
considered a “power” amp if it has enough current amplification to
drive a low impedance load (i.e., 4 or 8Ω loudspeakers).

344 | Chapter 18: Audio

Figure 18-8. A 1W Power Amplifier Built on a Breadboard

See Also
The TDA7052 datasheet can be found here: http://bit.ly/2nA0GgB.

For high-power class-D design, see Recipe 18.5.

18.5 Make a 10W Power Amplifier
Problem
You want a low-cost efficient power amplifier that will run cool even at full power.

Solution
Use a class-D digital amplifier IC such as the TPA3122D2. The schematic for this is
shown in Figure 18-9.

18.5 Make a 10W Power Amplifier | 345

http://bit.ly/2nA0GgB

Figure 18-9. A Class-D Power Amplifier Using a TPA3122D2

This design is a modified version of the one found on page 14 of this chip’s datasheet.
It will operate on a supply voltage of 10 to 30V, but at a convenient 12V will supply
about 7.5W per channel into 4Ω speakers. For more power you need to increase the
supply voltage.

The TPA3122D2 is a 20-pin DIL (dual in-line) IC that makes the design very suitable
for prototyping on a breadboard (Figure 18-10).

Figure 18-10. A Class-D Power Amplifier Using a TPA3122D2 on a Breadboard

346 | Chapter 18: Audio

One interesting feature of the TPA3122D2 is that the gain is set by two digital inputs
that set the gain to one of four values. Table 18-1 shows how these pins are used. In
the schematic of Figure 18-9 the lowest gain of 20dB is selected.

Table 18-1. Setting the Gain of a TPA3122D2

GAIN1 GAIN0 Amplifier gain (dB)

LOW LOW 20

LOW HIGH 26

HIGH LOW 32

HIGH HIGH 36

Discussion
Unlike traditional amplifier designs like that of Recipe 18.4 class-D amplifiers are
extremely efficient, transferring sometimes over 90% of the power supplied to them
to the output load (loudspeaker).

Figure 18-11 shows how a class-D amplifier works.

Figure 18-11. Block Diagram of a Class-D Amplifier

The input signal is converted into high-frequency PWM (250kHz in the case of the
TPA3122D2) by a combination of a triangle-wave generator and comparator. This is
actually the way Recipe 16.9 works. The length of the pulse will be determined by the
time it takes for the triangular signal to exceed the value of the analog input. Since the
analog input is a much lower frequency than the triangle wave, it can be considered
as having a constant instantaneous value, while the triangle wave is “sampling” it. It’s
a bit like driving fast past someone who is walking—the pedestrian is effectively sta‐
tionary from the car’s perspective.

18.5 Make a 10W Power Amplifier | 347

This PWM signal can then be amplified by transistors in a half-bridge switching
arrangement such as the one in Recipe 11.8. This is then low-pass filtered and fed to
the loudspeaker.

Digital amplifiers are perfectly acceptable for many applications, but they are unlikely
to be accepted by HiFi enthusiasts without considerable improvements in design.
They generally have higher levels of distortion than analog amplifiers. In
Figure 18-12 you can clearly see the distortion in the sinewave being amplified.

Figure 18-12. The Output of This Class-D Amplifier with a 6kHz Sinewave Input

See Also
For the TPA3122D2 datasheet see http://www.ti.com/lit/ds/symlink/tpa3122d2.pdf.

348 | Chapter 18: Audio

http://www.ti.com/lit/ds/symlink/tpa3122d2.pdf

CHAPTER 19

Radio Frequency

19.0 Introduction
It used to be that any electronics book worth its salt would include discrete circuits
for AM and FM broadcast receivers and maybe even discuss how an analog TV
works. In these digital days, topics like this are only for historical interest.

For this reason, this chapter mostly concentrates on the use of digital communica‐
tions using radio frequencies. The discussion of the nature of radio is restricted to
this introduction. The recipes themselves are fundamentally practical.

We take radio frequency for granted now, but when it first became popular, it must
have seemed like magic. After all, it allowed you to talk to someone miles away
without any wires connecting them. How could this be possible?

Transmitters and the Law

Recipe 19.1, Recipe 19.2, and Recipe 19.4 are radio transmitters.
Although most countries allow the use of low-power, short-range
FM transmitters and allocate certain bands for use with packet
radio, you should check your local regulations and make sure you
are not breaking the law by using any of these designs.

Amplitude Modulation (AM)
It all starts with AM transmissions, which use a carrier frequency modulated by the
audio signal that is being transmitted. Figure 19-1 shows how this works.

349

In Figure 19-1 the carrier frequency is only about 4.5 times the audio signal. In a real
AM broadcast, the audio signal will generally be a maximum of 16kHz against a car‐
rier frequency of 500kHz, making at least ten times as many cycles of carrier in each
cycle of the audio frequency shown in Figure 19-1. But it’s easier to see what is going
on with fewer cycles.

Figure 19-1. AM Transmission

Each transmitting station has its own frequency, and for AM public broadcasts in the
medium wave (MW) band, this range is around 520kHz to 1600kHz. The amplitude
of the carrier is modulated by the audio signal and the resulting signal broadcast
through an antenna.

One of the reasons the quality of AM is so bad is that there are many other factors
that can affect the amplitude of the carrier, including atmospheric conditions or
changes in position of the receiver if you are listening in a moving vehicle.

When it comes to the receiver, you need to be able to separate the radio-frequency
carrier (RF) from the audio signal.

The first step in this is to “tune in” to the transmission frequency you are interested
in. This means using a narrow band-pass filter (Recipe 17.9) so that all the other sta‐
tions get tuned out. This is traditionally accomplished by using a tuned circuit in the
form of a fixed inductor (also acting as the antenna) and a variable capacitor that is
varied to tune into different frequencies.

350 | Chapter 19: Radio Frequency

Since your ears cannot hear frequencies above 20kHz (lower as you get older) a radio
carrier frequency of 500kHz or more will be inaudible. With your ears acting as a
low-pass filter, you might expect that with suitable amplification of the tuned radio
signal, you would be able to hear the audio signal modulating it. This is almost cor‐
rect, but because the “average” of each cycle (whatever the amplitude) is zero (each
positive wave followed by a negative one), you won’t hear anything. However, if you
introduce a diode to remove one half of the signal (Figure 19-2), then suddenly the
original audio signal can be separated and you will be able to hear the audio in the
envelope of the AM signal and your ears will now happily be a low-pass filter for you.

Figure 19-2. Detecting the Audio Signal from AM

The big empty space on the bottom of Figure 19-2 serves to show where the diode has
removed the negative part of the tuned signal.

The earliest AM receivers (crystal sets) were literally a coil, antenna, variable capaci‐
tor, diode (germanium for its lower forward voltage), and sensitive headphones as
shown in Figure 19-3.

Improvements have been made to the design of AM receivers, in particular amplifica‐
tion of the RF signal before detection, followed by further amplification to drive a
loudspeaker, but the basic principles of an AM receiver are as they were a century
ago.

19.0 Introduction | 351

Figure 19-3. A Basic AM Receiver

Frequency Modulation (FM)
Frequency modulation (FM) improves on AM by varying the frequency of the carrier
rather than its amplitude. This improves the quality of the sound being broadcast, as
the frequency is immune from changes due to atmospheric conditions or movement
of the receiver. Figure 19-4 shows how an audio signal would be used to modulate a
carrier.

Figure 19-4. Frequency Modulation

To create an FM transmitter, a VCO (Recipe 16.10) is used. The audio signal is fed
into the frequency control input of the VCO to vary the frequency. The first recipe in
this chapter (Recipe 19.1) is a simple, low-power FM transmitter.

352 | Chapter 19: Radio Frequency

Extracting the audio signal from an FM broadcast can be accomplished by using a
number of techniques, but perhaps the most common is to use a VCO in an arrange‐
ment called a phase-locked-loop (PLL). Figure 19-5 shows a PLL configured as an
FM demodulator.

Figure 19-5. A Phase-Locked Loop FM Demodulator

The RF signal is first tuned to a particular frequency as with an AM receiver, but then
to demodulate the original audio, the RF signal is fed into a phase comparator. The
phase comparator produces an output that is zero if its two input signals are com‐
pletely in phase. If the signals are out of phase with each other then the comparator
produces an output proportional to the difference in phase. This signal is then low-
pass filtered, amplified, and used to control a VCO whose output supplies the second
input to the phase comparator. This feedback results in the VCO producing a signal
of the same frequency as the RF input to the phase comparator. As the output of the
VCO tracks the RF frequencies the small shifts in phase resulting from the modula‐
tion will result in the audio signal being available in the filtered and amplified output
of the phase detector. The amplified output contains the demodulated audio signal
almost as a side effect of the PLL tracking the broadcast signal.

PLL chips are available that include the VCO, phase comparator, and other parts all in
one convenient package. However, if you are making an FM receiver, then you would
just use an FM receiver IC that includes the RF amplification, PLL, and pretty much
everything needed for the receiver aside from a few resistors, capacitors, and induc‐
tors.

Digital Radio
Radio is now very much a digital affair. FM radio receivers and transmitters are now
often implemented as software-defined radios (SDRs). Processors are now so fast that
with a very small amount of hardware they can produce and decode analog broadcast
signals in software. For example, the filtering, phase detecting, etc. of a PLL can all be

19.0 Introduction | 353

done as software algorithms rather than directly in hardware. In Recipe 19.2 you will
find a recipe for a SDR FM transmitter using a Raspberry Pi.

In addition to using digital electronics to decode analog signals, the use of digital sig‐
nals carried on RF is everywhere from your cellphone to the remote you use to
unlock your car.

This chapter has several recipes for passing digital data wirelessly between devices.

19.1 Make an FM Radio Transmitter
Problem
You want to make a short-range FM transmitter that will transmit the sound signal
on a domestic FM frequency where it can be received on a household receiver.

Solution
Use a high-frequency VCO chip (MAX2606) set to operate in a frequency on the FM
band and use the audio signal to make small adjustments to the frequency.

The schematic for this is shown in Figure 19-6.

Figure 19-6. An FM Transmitter Using a VCO IC

The variable resistor R4 is used to tune the transmitter to a particular frequency. The
antenna can be a telescopic FM antenna or simply a few feet of wire.

354 | Chapter 19: Radio Frequency

Discussion
The inductor L1 sets the center frequency of the VCO. The datasheet for this device
indicates that an inductor of 390nH will give a center frequency of around 102MHz.

The control signal applied to the TUNE pin of the VCO comprises a fixed DC offset
supplied by R4 (to allow tuning to a particular transmission frequency) and an audio
signal that is sufficient to produce the desired frequency modulation.

The output OUT+ of the MAX2606 drives the antenna. The datasheet also suggests
that complementary open-collector output OUT– is also supplied with a 1kΩ pull-up
resistor.

See Also
This recipe is based on the tutorial by Afroman who also has an open source hard‐
ware circuit board that you can make yourself or buy from OSHPark.

The datasheet for the MAX2606 can be found at http://bit.ly/2ltwp5O.

19.2 Create a Software FM Transmitter Using Raspberry Pi
Problem
You want to know how you can use your Raspberry Pi to act as an FM transmitter.

Solution
Use the PiFM software and attach an antenna to GPIO pin 4 of your Raspberry Pi.
This can be just a female-to-male jumper wire as shown in Figure 19-7.

First, you’ll need to download and install PiFM using the following commands:

$ mkdir pifm
$ cd pifm
$ wget http://omattos.com/pifm.tar.gz
$ tar -xvf pifm.tar.gz

If you have a Raspberry Pi 2 or 3, you have to download and compile a modified ver‐
sion of the software to work on the newer hardware, so run the following commands:

$ git clone https://github.com/oatmeal3000/pi2fm.git
$ mv pi2fm pi2fmdir
$ mv pi2fmdir/pi2fm.c .
$ gcc -lm -std=c99 -g pi2fm.c -o pi2fm

19.2 Create a Software FM Transmitter Using Raspberry Pi | 355

http://bit.ly/2n302r1
http://bit.ly/2mtaNWV
http://bit.ly/2ltwp5O

Figure 19-7. A Raspberry PiFM Transmitter

You will now have two executable programs, one called pifm for the Raspberry Pi 1
models and pi2fm for the Raspberry Pi 2 and 3. If you have an original Pi 1 you will
need to modify pi2fm to be just pifm in the following commands, which will play the
file sound.wav supplied with the pifm software:

pi@raspberrypi:~/pifm $ sudo ./pi2fm sound.wav 94.0
starting...
 -> carrier freq: 94.0 MHz
 -> band width: 8.0
now broadcasting: sound.wav ...

Discussion
Attaching a longer wire to pin 4 will considerably increase the range of the transmit‐
ter.

See Also
The original web page for the PiFM project can be found here: http://bit.ly/18AcT5u.

Details on the Raspberry Pi 2 version are here: https://github.com/oatmeal3000/pi2fm.

356 | Chapter 19: Radio Frequency

http://bit.ly/18AcT5u
https://github.com/oatmeal3000/pi2fm

19.3 Build an Arduino-Powered FM Receiver
Problem
You want to make an FM radio receiver controlled by an Arduino.

Solution
Use a TEA5767 FM radio-receiver module controlled by an Arduino and either con‐
nect headphones or use a power amplifier to drive speakers.

Figure 19-8 shows how the module is connected to an Arduino.

Figure 19-8. Connecting a TEA5767 FM Receiver Module to an Arduino

To make the module as easy to program as possible, download the Arduino TEA5767
library by clicking on Clone or download on GitHub. Select the option to download
as a ZIP file and then from the Arduino IDE select the menu option Sketch→Include
Library→Add ZIP Library and navigate to the ZIP file you just downloaded.

Discussion
To build a circuit using this module on a breadboard (Figure 19-9), you will need a
breakout circuit board that allows you to connect the fine pitch of the module’s con‐
nectors to the breadboard. You can make this yourself using stripboard or buy a
breakout board from OSHPark or Monk Makes.

19.3 Build an Arduino-Powered FM Receiver | 357

https://github.com/simonmonk/arduino_TEA5767
http://bit.ly/2mbOYKh
http://bit.ly/2ltxNFx
http://bit.ly/2mUg8E2

Figure 19-9. An Arduino-Controlled FM Radio on a Breadboard

The sketch ch_19_fm_radio uses the Serial Monitor so that you can enter the fre‐
quency you want to tune in to. When using the Serial Monitor with this sketch, make
sure the “Line ending” drop-down list is set to “No line ending” before sending a fre‐
quency to the Arduino.

The sketch is available with the book downloads (see Recipe 10.2) and is listed here:

#include <Wire.h>
#include <TEA5767Radio.h>

TEA5767Radio radio = TEA5767Radio();

void setup() {
 Serial.begin(9600);
 Serial.println("Enter Frequency:");
 Wire.begin();
}

void loop() {
 if (Serial.available()) {
 float f = Serial.parseFloat();
 radio.setFrequency(f);
 Serial.println(f);

358 | Chapter 19: Radio Frequency

 }
}

The setFrequency function accepts a decimal value in MHz (e.g., 93.0).

See Also
To make a suitable power amplifier for this project, see Recipe 18.4 or Recipe 18.5.

For an FM transmitter to accompany this receiver, see Recipe 19.1 or Recipe 19.2.

19.4 Send Digital Data Over a Radio
Problem
You want to send data hundreds of yards over a radio connection.

Solution
Use a CC1101 RF transceiver (transmitter/receiver). These boards are readily avail‐
able on eBay at very low cost. Figure 19-10 shows how you would wire one up to the
SPI interface of an Arduino.

Figure 19-10. Wiring a CC1101 Module to an Arduino

19.4 Send Digital Data Over a Radio | 359

The module is a 3.3V device and the datasheet states that none of the pins should
have a voltage of more than 3.9V applied to them, so a level converter should be used
on all pins used as inputs to the CC1101. This takes the form of six resistors used in
pairs as voltage dividers (see Recipe 2.6).

Discussion
Clearly to test out this recipe, you will need two Arduinos and two CC1101 modules
each wired up as shown in Figure 19-11.

Figure 19-11. An Arduino Uno Wired to a CC1101 Module

Testing the modules can get very confusing because the Arduino IDE can only have
one port selected at a time. It’s much easier to find a second computer to use both for
programming the transmitter and for running the Serial Monitor.

The library used for these examples should be downloaded as a ZIP file from https://
github.com/simonmonk/CC1101_arduino by clicking on the Clone or download but‐
ton and selecting Download ZIP. Save the ZIP file somewhere and then from the

360 | Chapter 19: Radio Frequency

https://github.com/simonmonk/CC1101_arduino
https://github.com/simonmonk/CC1101_arduino

Sketch menu choose Sketch→Include Library→Add ZIP Library and select the ZIP
you just downloaded.

The two example programs (one for transmit and one for receive) are the examples
that accompany the library, but these can also be downloaded with the downloads for
the book (see Recipe 10.2).

Here is the transmitter code (ch_19_cc1101_tx):

#include <ELECHOUSE_CC1101.h>

const int n = 61;
byte buffer[n] = "";

void setup() {
 Serial.begin(9600);
 Serial.println("Set line ending to New Line in Serial Monitor.");
 Serial.println("Enter Message");
 ELECHOUSE_cc1101.Init(F_433); // set frequency - F_433, F_868, F_965 MHz
}

void loop() {
 if (Serial.available()) {
 int len = Serial.readBytesUntil('\n', buffer, n);
 buffer[len] = '\0';
 Serial.println((char *)buffer);
 ELECHOUSE_cc1101.SendData(buffer, len);
 }
}

The maximum packet size is 64 bytes and buffer is used to contain the data to be
sent, which can by anything you can pack into a byte array. In this case, short text
messages.

In the setup function, the communication frequency is set. The Serial Monitor first
reminds you to turn line endings on in the Serial Monitor. When you send a message
the contents of the message are written into buffer and SendData then used to trans‐
mit the message you typed.

The corresponding receiver code can be found in ch_19_cc1101_tx and is listed here:

#include <ELECHOUSE_CC1101.h>

const int n = 61;

void setup()
{
 Serial.begin(9600);
 Serial.println("Rx");
 ELECHOUSE_cc1101.Init(F_433); // set frequency - F_433, F_868, F_965 MHz
 ELECHOUSE_cc1101.SetReceive();
}

19.4 Send Digital Data Over a Radio | 361

byte buffer[61] = {0};

void loop()
{
 if (ELECHOUSE_cc1101.CheckReceiveFlag())
 {
 int len = ELECHOUSE_cc1101.ReceiveData(buffer);
 buffer[len] = '\0';
 Serial.println((char *) buffer);
 ELECHOUSE_cc1101.SetReceive();
 }
}

This sketch uses CheckReceiveFlag to monitor Arduino pin 2 for the CC1101 to
indicate that a new message has arrived. When a message does arrive, it is read
into buffer and then displayed in the Serial Monitor. Figures 19-12 and 19-13 show
the Serial Monitors of the transmitter and receiver, respectively.

Figure 19-12. Transmitting a Message Using a CC1101 Module

362 | Chapter 19: Radio Frequency

Figure 19-13. Receiving a Message Using a CC1101 Module

See Also
You can find the datasheet for the CC1101 IC here: http://bit.ly/2ltuxK9.

The library used here is modified from that of elechouse.com that also sells CC1101
modules: http://bit.ly/2n3lnQK.

19.4 Send Digital Data Over a Radio | 363

http://bit.ly/2ltuxK9
http://bit.ly/2n3lnQK

CHAPTER 20

Construction

20.0 Introduction
This chapter deals with practical techniques for making solderless prototypes and
then building more durable versions of them.

20.1 Create Temporary Circuits
Problem
You want to construct a circuit quickly and easily without having to do any soldering.

Solution
Using a solderless breadboard (Figure 20-1) is a great way to temporarily build an
electronic design because you can easily swap out different components without hav‐
ing to desolder (Recipe 20.6). Once the design is right it can be transferred either to a
prototyping board (Recipe 20.2) or a circuit board of your own design (Recipe 20.3).

Breadboards are available in many shapes and sizes. I recommend having a good sup‐
ply of 400-point breadboards (often called half-breadboards) as these are a great size
to accommodate a couple of chips and a whole load of components. For those situa‐
tions where you need more prototyping area breadboards can be clipped together.

365

Figure 20-1. A Selection of Breadboards

Figure 20-2 shows how a 400-point breadboard is constructed of rows of five holes,
all connected together by a clip. Note that there is a break in connectivity between
“abcde” and “fghij.”

The “supply rails” in pairs down the sides of the board are all connected together and
can be used for any purpose, but generally the ones marked in blue or with a “–” next
to them are used for ground and the red ones marked with a “+” are used for the pos‐
itive supply.

The rows and columns of the breadboard are labeled with numbers and letters, mak‐
ing it easier to transfer the designs to a more permanent design using Permaproto or
Monk Makes Protoboard. These are general-purpose circuit boards with the same
layout as breadboards.

366 | Chapter 20: Construction

Figure 20-2. The “Half-Breadboard” Layout

Figure 20-3 shows the two-transistor oscillator from Recipe 16.2 built on a bread‐
board.

Through-hole component leads are pushed into holes on the breadboard and connec‐
ted to other component leads either by being in the same breadboard row, or by using
male-to-male jumper wires to link one part of the board to another.

20.1 Create Temporary Circuits | 367

Figure 20-3. Building a Circuit on a Breadboard

There is a bit of craft involved in the mental conversion of a schematic to a bread‐
board layout. Figure 20-4 shows the schematic layout for Recipe 16.2 and Figure 20-5
the one corresponding to the breadboard layout (also shown in Figure 20-3).

Figure 20-4. Schematic for a Transistor Oscillator

368 | Chapter 20: Construction

Figure 20-5. Breadboard Layout for a Transistor Oscillator

When transferring a schematic to a breadboard, I start with the key components and
the ones whose legs won’t bend very far. Usually this means starting with any ICs, but
in this case, it means the transistors, which I have placed on opposite halves of the
breadboard, mirroring the schematic.

Then I add the other components and jumper wires. There is no hard and fast
method for this layout, and of course, being solderless, it’s very easy to change things
around if you run out of room.

Discussion
Figure 20-5 was drawn using an open source software tool called Fritzing. This tool
produces great-looking diagrams and also allows you to view the same circuit as a
schematic, breadboard, or circuit board design, allowing you to use the same software
right through from prototyping to circuit board.

20.1 Create Temporary Circuits | 369

When it comes to connecting a breadboard to an Arduino or Raspberry Pi, you can
use male-to-male or male-to-female jumper wires, respectively. Figure 20-6 shows
Recipe 12.12 on a breadboard connected to a Raspberry Pi.

Figure 20-6. Connecting a Breadboard to a Raspberry Pi

Figure 20-7 shows an Arduino Micro on a solderless breadboard. This is one of
several models of Arduino including the “mini” and “nano” models that are “bread‐
board friendly.”

The breadboard shown in Figure 20-3 is likely to have proper electronic engineers
holding their heads in their hands and gritting their teeth. The problem with it is that
it is all too easy for a component lead to touch another lead that it shouldn’t or simply
fall out. This type of arrangement requires care to make sure nothing is touching that
shouldn’t be but is fine while you are getting something working. For a halfway house
before you move to a soldered prototype, you can take a neater approach and use
solid-core wire trimmed to just the right length to lie flat on the breadboard instead
of using jumper wires. You can also trim all the component legs so that they are just
the right lengths, but this can make them difficult to reuse in your next design.

370 | Chapter 20: Construction

Figure 20-7. An Arduino Micro on a Breadboard

20.1 Create Temporary Circuits | 371

See Also
For more information on Fritzing see http://fritzing.org or my book Fritzing for Inven‐
tors, TAB DIY, 2015.

When you are ready to transfer your design to a soldered prototype follow Recipe
20.2.

20.2 Create Permanent Circuits
Problem
You want to transfer your solderless breadboard design to a soldered design, either as
a more durable prototype or as the final build for a one-off project.

Solution
Use a prototyping board or protoboard such as the Adafruit Permaproto or the Monk
Makes Protoboard and simply transfer the components from their positions on the
breadboard to the same locations on the protoboard.

Figure 20-8 shows the starting point for this process of transferring the design from
a breadboard to a Monk Makes Protoboard. The details of the design are not impor‐
tant, but for those interested, it is an energy monitor using a particle photon
Arduino-like board, a current sensor, and an AC transformer. Note that the bread‐
board itself is attached to a Monk Makes Protoboard to allow use of the screw termi‐
nal and audio-type socket to connect the current sensor and AC transformer to the
prototype.

Figure 20-8. The Prototype on a Breadboard

372 | Chapter 20: Construction

http://fritzing.org

The components can then be moved from the breadboard one at a time, making note
of the lead’s row and column coordinates and soldering them onto the Monk Makes
Protoboard as shown in Figure 20-9. Finally, Figure 20-10 shows the completed board
and the bare breadboard ready for your next project.

Figure 20-9. Transferring the Components to the Protoboard

Figure 20-10. The Completed Protoboard

Discussion
Other useful prototyping boards are available including Permaproto boards from
Adafruit that are designed to be attached by a ribbon connector to a Raspberry Pi.

When it comes to Arduino, the Arduino Protoshield is a great way to build some‐
thing and then plug it as a whole board into the top of an Arduino Uno. Figure 20-11
shows a Protoshield with an LED cube project built onto it. The Protoshield is then
attached to an Arduino.

20.2 Create Permanent Circuits | 373

Figure 20-11. An Arduino Protoshield LED Cube

Another popular method for making soldered prototypes is to use stripboard. Strip‐
board (Figure 20-12 and Figure 20-13) is arranged with copper tracks in rows and
can be cut to whatever size you need for your project. Breaks in the track are made
using a tool called a “spot cutter” or by using a drill bit rotated by hand just enough to
cut the copper.

Figure 20-12. Stripboard (top side)

374 | Chapter 20: Construction

Figure 20-13. Stripboard (under-side)

Perfboard (i.e., perforated board) is like stripboard, but without the copper strips on
the back. All connections are made by bending the component leads or lengths of
solid-core wire.

Protoboard, which is a variation on perfboard with a separate pad behind each hole,
is also available.

See Also
For Permaproto see: https://www.adafruit.com/product/571.

For Monk Makes Protoboard see: https://www.monkmakes.com/pb/

The LED cube project is taken from my book The TAB Book of Arduino Projects, TAB
DIY, 2015.

20.3 Design Your Own Circuit Board
Problem
You want to design a circuit board for your project.

20.3 Design Your Own Circuit Board | 375

https://www.adafruit.com/product/571
https://www.monkmakes.com/pb/

Solution
While the solution to this recipe cannot fit into one recipe, you can start by using cir‐
cuit board design software such as CadSoft EAGLE to draw the schematic for your
boards and then layout a circuit board. You can then send away the design files
(known as Gerbers) to a circuit board fabrication provider.

Designing a simple circuit board is well within the reach of the amateur. If you
restrict yourself to two copper layers, then you can use one of many CAD (computer-
aided design) packages for circuit board design.

Perhaps the most popular CAD system is EAGLE CAD (Figure 20-14), which is not
open source, but there is a free version for noncommercial projects. One advantage of
using EAGLE CAD is that it has been adopted by the open source hardware move‐
ment as their CAD system of choice and there are many OSH designs for which
the EAGLE design files are available for download, which you can adapt to your own
needs. EAGLE is not an intuitive piece of software. If you have used any other circuit
board design software, you may be able to find your way around unaided, but typi‐
cally you will need to follow a few tutorials step-by-step before it really starts to make
sense.

Nearly all the schematic diagrams in this book were drawn with EAGLE and once you
are familiar with all its quirks, you will probably grow to enjoy using it.

Figure 20-14. The EAGLE CAD Schematic Design Editor

376 | Chapter 20: Construction

For open source enthusiasts KiCad is a fully featured open source equivalent to
EAGLE, and it can import some EAGLE file formats. Like EAGLE, don’t expect to
have a finished board design ten minutes after downloading the software.

DesignSpark is a free-ish CAD system that is gaining in popularity and is relatively
easy to use, but it does inflict adverts on users.

If you have a really simple circuit board design to make that uses fairly common com‐
ponents, then Fritzing will take you to circuit board design via schematic and bread‐
board and is easy to use. However, if you run into parts that are not included with
Fritzing (and you probably will) you may well have to make your own parts, which is
a little tricky and requires you to have some skill editing multilayer SVG files.

All of the CAD options described will give you the option to export Gerber design
files. You can then use an online circuit board service that will let you upload a ZIP
file containing the design, and in a week or two, send you back a small batch of
boards. The minimum is usually 10 for as little as a dollar a board for small boards.

The circuit board services are changing all the time. I have used PCBWay, ITEAD
Studio, and Seeed Studio for circuit board manufacture without any problems.

Discussion
It used to be worth making your own circuit boards. In fact, I still have all the equip‐
ment for this tucked away in a box that I don’t expect ever to open. Photo etching
your own circuit boards does not need to be expensive; you can make your own UV
exposure box with UV LEDs easily enough, but you will also need noxious chemicals
that do not keep once mixed and are difficult to dispose of responsibly. The end
results are also generally inferior to the circuit boards a professional service will pro‐
duce for you. So my advice is to plan ahead a little and have your circuit boards pro‐
duced professionally.

See Also
For a guide to EAGLE CAD see: Make Your Own PCBs with EAGLE: From Schematic
Designs to Finished Boards, TAB DIY, 2014.

The KiKad website is here: http://kicad-pcb.org/.

You can find out about DesignSpark here: https://www.rs-online.com/designspark/
pcb-software.

I also have also written a guide to using Fritzing called Fritzing for Inventors: Take
Your Electronics Project from Prototype to Product, TAB DIY, 2015.

20.3 Design Your Own Circuit Board | 377

http://kicad-pcb.org/
https://www.rs-online.com/designspark/pcb-software
https://www.rs-online.com/designspark/pcb-software

20.4 Explore Through-Hole Soldering
Problem
You want to learn the best technique for soldering through-hole components onto a
circuit board.

Solution
Make the junction of the component lead and the solder pad hot for a second or two
before applying the solder, as shown in Figure 20-15.

Figure 20-15. Soldering a Circuit Board Joint

In more detail, to make a good solder joint, you should:

1. Make sure your iron is up to temperature for the solder you are using. For leaded
solder, that should be around 280°C (536°F) and for unleaded solder 310°C
(590°F). If things aren’t working well try altering the temperature.

378 | Chapter 20: Construction

2. Clean the tip of your iron on a damp sponge or brass wool. It should look shiny
when you are done.

3. Touch the iron to where the component lead meets the solder pad and leave it
there for just a second or so to heat.

4. Feed in some solder to where the circuit board and component lead meet until
the solder has flown around the lead covering all the pad, with a little peak of
solder pulled up toward the top of the lead.

5. Cut off the excess lead.

Safe Soldering

Soldering irons get hot—very hot—and can inflict nasty burns, so
be careful. Safety glasses are a good idea as occasionally specks of
solder can fly off if flicked by a lead, or even from boiling flux, and
if your eyes are close to the thing you are soldering (which is quite
likely) you could damage your eyes.
It is also a good idea to use a fume extractor (these do not need to
be expensive; see Appendix A) to take away the noxious fumes
released as the flux in the solder burns. This is not really something
you want in your lungs.

Discussion
Due to various international regulations that have been put in place, lead (the element
Pb) is rapidly being phased out of use in circuit board manufacture. Most solder is
now unleaded. Unfortunately, unleaded solder has a higher melting point and is gen‐
erally a bit more difficult to use than the leaded variety. You can still buy leaded sol‐
der and many people keep a reel of “the good stuff.”

If you are using small components, then use a thin multicore rosin solder. I use
0.7mm.

See Also
You will find some good video tutorials for soldering on YouTube, and SparkFun has
a great video on how to solder here: http://bit.ly/2mDxVyD.

I also recommend the book Learn to Solder by Brian Jepson, Maker Media, 2012.

20.5 Explore Surface-Mount Soldering
Problem
You want to solder a SMD to a circuit board.

20.5 Explore Surface-Mount Soldering | 379

http://bit.ly/2mDxVyD

Solution
If you are making a one-off, or just a few prototypes, consider soldering by hand.
Unless you are very skilled, the results will not be great, but you should be able to
make a functional prototype this way.

Soldering by hand is a great deal easier if you stick to SMD resistors and capacitors
that are 0603 or larger and ICs with a pin spacing of 50 mils (1.27mm) or wider as
found in SOIC packages.

Most components are available in a variety of different package sizes.

When soldering SMDs you will need to hold the part down (I use tweezers) while you
solder each pin to a pad. As with through-hole soldering, heat the pin and pad for a
second or so before touching the solder onto the pad and pin, flowing the solder into
the joint.

When soldering the first pin, it’s best to put a tiny blob of solder on one pad
(Figure 20-16) and then solder the first pin by just heating and pressing the pin onto
the pad (Figure 20-17). You should find that once one pin is soldered, you don’t need
to hold the device in place (Figure 20-18). When you have soldered all the other pins,
it’s a good idea to circle back to the first pin and just flow a bit of solder into it to
make sure it’s well soldered.

Figure 20-16. Placing a Small Blob of Solder on One Pad

380 | Chapter 20: Construction

Figure 20-17. Holding the Component in Place While Soldering the First Pin

Figure 20-18. A Hand-soldered SMD Resistor

An alternative to using a soldering iron is to use solder paste and a hot-air gun. Here
the procedure is to first place a little solder paste onto the component pads

20.5 Explore Surface-Mount Soldering | 381

(Figure 20-19). Place the component onto the pads and hold it down with the tip of
the tweezers while you heat it up with the hot-air gun (Figure 20-20).

Figure 20-19. Placing a Small Blob of Solder Paste on the Pads

Figure 20-20. Holding the Component Down While Heating with the Hot-air Gun

382 | Chapter 20: Construction

If you have a reflow oven, like the homemade one shown in Figure 20-21, then you
start as you would when using a hot-air gun, placing solder paste onto each pad. This
task can be made easier by using a stencil, which most circuit board manufacturers
will provide during circuit board manufacture for an extra cost.

Figure 20-21. A Homemade Reflow Oven

Having applied the solder paste, place the components (they will stick to the solder
paste). Then “cook” the board to melt the solder paste. A sophisticated reflow oven
will have profiles you can set for different types of solder paste. It is surprising what
you can get away with using a homemade oven. Mine is made from a converted
toaster oven with a temperature probe fitted. A bit of trial and error will eventually
get things right, but, purely as an example, my procedure for using lead solder paste
(which has a lower melting temperature) is:

1. Place the board in the oven.
2. Put the oven on maximum until the temperature reaches 80°C, then turn it off

and let it “soak” for 2 minutes during which the reported temperature will con‐
tinue to increase, peaking at about 130°C.

3. Put the oven on maximum again until the solder paste has melted (at about
140°C) and then the oven should be turned off.

4. After a further 30 seconds, open the oven door to let the circuit board cool
quickly.

20.5 Explore Surface-Mount Soldering | 383

Your procedure will no doubt be different, but when you’ve found the magic formula
for your setup, it should work every time.

Homemade SMD Ovens Can Cause Fires

Modified toaster ovens are potentially very dangerous (they have
the nickname “fire starters” for good reason). Both when making
modifications to the oven and when using it you must know
exactly what you are doing and the risks involved. If you are not
absolutely sure about what you’re doing, do not be tempted to
make your own.
A homemade oven should not be left unattended for a moment
while in use.

Discussion
Many circuit board fabricators also provide a circuit board assembly service. For a
small batch of 5 or 10 prototypes, this can still be pretty cost effective as an alternative
to cooking your own boards. It’s certainly a lot safer than making your own reflow
oven.

See Also
For soldering through-hole components, see Recipe 20.6.

20.6 Desolder Components
Problem
You made a mistake and need to remove a soldered component from a board.

Solution
Desoldering is generally a lot harder than soldering. Unless the component you want
to desolder is valuable, you can make your life easier by not worrying about destroy‐
ing it to get it off the board.

For through-hole two-lead components like resistors, I use the following procedure:

1. Remove as much of the solder as possible by pressing the desoldering braid
against the pad and then heating it with the soldering iron (Figure 20-22).

2. Sometimes this is so effective that you can then just pull out the component, but
more often than not you will need to snip the component in half, or cut the lead
at one end if there is enough spare lead to get a hold of with a pair of pliers on the
top side of the board.

384 | Chapter 20: Construction

3. One leg at a time, hold the lead on the top side of the circuit board with pliers,
and pull the lead out while heating the solder joint from below.

Figure 20-22. Using the Desoldering Braid

Desoldering DIL ICs is a lot more difficult, but again, if you don’t mind sacrificing
the IC, you can chop off its pins and desolder each one separately. Removing the IC
as a whole is also possible. Starting with the desoldering braid, get the IC as clean of
solder as possible and then push a screwdriver under one end of the IC and gently
lever it off, swapping sides with the screwdriver to gradually work the IC out.

Desoldering SMDs is much easier. Just hold a hot-air gun over the component and it
will probably just blow away after a while.

Discussion
Desoldering components is time consuming and you often end up damaging the cir‐
cuit board pads or the component being removed. Sometimes it’s quicker just to
throw it in the trash and start again.

See Also
To solder through-hole devices, see Recipe 20.4 and for SMDs Recipe 20.5.

20.7 Solder Without Destroying Components
Problem
You have a high-power component (say a power transistor) and you want to know
how big a heatsink to add to it to prevent it from overheating.

20.7 Solder Without Destroying Components | 385

Solution
Determine the power the device will need to continuously dissipate and decide the
maximum temperature (Tmax) you want the device to reach (less than its absolute
maximum in the datasheet). Then use the following formula to find the thermal
resistance the heatsink (RØheatsink) will need to provide:

Rθheatsink =
Tmax − Tambient

P − Rθpackage

Here, Tambiant is the ambient temperature and RØpackage is the thermal resistance
of the component package (1.5° C/W for a TO220 power transistor).

As an example, the datasheet for a TIP120 states that the maximum temperature is
150°C so let’s stay well under this with a Tmax of 130°C. Let’s assume the TIP120 is
expected to be used in a circuit where it will generate 10W of heat.

Let’s also assume the ambient temperature of the project’s enclosure is 30°C (very
dependent on ventilation).

Plugging these numbers into the formula, we have:

Rθheatsink =
Tmax − Tambient

P − Rθpackage = 130 − 30
10 − 1 . 5 = 8 . 5C/W

Searching through the heatsink listings in a component catalog, you can find heat‐
sinks with thermal resistances of 8.5C/W or better.

Discussion
Having done the calculations, test the temperature rise of the device for real and in its
final enclosure, as the degree of ventilation in the enclosure will make a big differ‐
ence. If need be, a fan on the heatsink will increase the heat dissipation considerably.

Heatsinks are available in a great variety of shapes and sizes. Figure 20-23 shows a
selection of them.

386 | Chapter 20: Construction

Figure 20-23. Heatsinks (Large and Small)

When attaching a device to a heatsink, you should smear a thin layer of heatsink
compound (white paste) onto the device to greatly improve the heat transfer from the
device to the heatsink.

See Also
For background on power, see Recipe 1.6.

The datasheet for the TIP120 is found here: http://bit.ly/2mHBQy6.

20.7 Solder Without Destroying Components | 387

http://bit.ly/2mHBQy6

CHAPTER 21

Tools

21.0 Introduction
This chapter explains how to use some of the most common electronic tools and test
equipment. This includes both instruments for measurement such as multimeters
and oscilloscopes and also simulation software that can be useful during design, espe‐
cially when dealing with analog electronics.

21.1 Use a Lab Power Supply
Problem
You want to know how to correctly use a lab power supply.

Solution
To correctly use a lab power supply, follow these steps:

1. Set the voltage to the voltage your circuit needs.
2. Set the current limiting to slightly higher than the expected current consumption

of your circuit.
3. Turn on the output and watch the voltage display. If too much current is being

drawn, the voltage will drop, indicating that something is wrong.

Discussion
Aside from a multimeter, the lab power supply is probably the most useful piece of
test equipment you can own. Owning one will save you vast amounts of time in the
long run because you won’t have to hunt around for batteries and cobble together

389

power supplies and reduce the chance of accidental destruction of components when
prototyping.

Figure 21-1 shows a typical lab power supply capable of supplying up to 22V at 5A.

Figure 21-1. A Lab Power Supply

The top line of the display shows the voltage and the bottom, the current. When the
output is off, the voltage knob allows you to set the voltage. The current knob sets the
maximum current the circuit will be allowed to draw. If the circuit exceeds this, the
power supply will automatically decrease the voltage until the current is below the set
maximum. In this way, the power supply can be used as:

• Constant voltage with a maximum current
• Constant current with a maximum voltage

In addition to a single-output power supply like the one shown in Figure 21-1 dual-
output power supplies are also available. These are very useful for analog circuits that
require a split-voltage supply.

See Also
For information on building your power supplies of various sorts, see Chapter 7.

390 | Chapter 21: Tools

21.2 Measure DC Voltage
Problem
You want to measure DC voltage.

Solution
If you have an autoranging multimeter, simply set the meter to DC voltage and con‐
nect the probes across the voltage source.

If you have a multimeter where the range is set manually, determine the maximum
voltage you expect to see and set the meter to the range whose maximum is above
that value. Then connect the probe leads across the point in the circuit you want to
measure.

Once you have established that the voltage is not too high for the range you selected,
you can reduce the voltage range for better precision.

Discussion
Figure 21-2 shows a typical medium-range digital multimeter (DMM).

Figure 21-2. A Digital Multimeter

Although an autoranging multimeter might seem to be superior to a multimeter
where the range has to be set, in practice, it can be an advantage to think about what
reading you are expecting to see before you take the reading (manually setting the
range forces you to do this).

21.2 Measure DC Voltage | 391

Even very low-cost DMMs generally provide better precision and accuracy than an
analog meter. The principle advantage of an analog meter is that you may get a few
more clues about what you are measuring if, for example, the tip of the meter’s needle
jitters slightly to indicate noise, or you can see the rate of change of voltage as the
speed of the meter moving in one direction or another. Some DMMs try to give you
the best of both worlds by including an “analog” bargraph-type display in addition to
the digital display.

Test Leads
Multimeters are generally supplied with probe-type test leads, which are fine for say
measuring the voltage across a component, but often it is more convenient to be able
to clip the leads in place while taking measurements.

It’s also often quite handy to clip on the negative lead of the multimeter to ground and
then use the probe end of the positive lead to measure the voltage at various parts of
the circuit you are testing.

So, I highly recommend you buy yourself some multimeter leads that terminate in ali‐
gator clips, like the ones shown in Figure 21-2, to complement the regular test leads.

See Also
For measuring AC voltage, see Recipe 21.3.

21.3 Measure AC Voltage
Problem
You want to measure AC voltage.

Solution
Follow the same procedure as Recipe 21.2 except set the multimeter range to AC volts
rather than DC volts.

Since you are measuring AC you will get the same polarity of reading no matter how
the leads are placed onto the circuit.

If you are planning to measure high-voltage AC ensure your meter probes are rated
for high voltage. Also see Recipe 21.12.

392 | Chapter 21: Tools

Discussion
Most DMMs will provide only an approximation of the RMS (root mean square)
voltage by rectifying and smoothing it. Higher-end multimeters often include the fea‐
ture “true RMS.”

See Also
For measuring DC voltages, see Recipe 21.2.

21.4 Measure Current
Problem
You want to measure the current flowing through a certain point in a circuit.

Solution
To use a multimeter to measure current:

• Set the meter’s range appropriately for AC/DC and at a higher range than the
maximum current you expect.

• Fit the meter probes into the sockets indicated for current measurement. Note
that these will be different sockets than for voltage measurement and there may
be different sockets for different current ranges.

• Connect the leads to your circuit so the multimeter is in the current path.
Figure 21-3 shows a DMM being used this way.

Figure 21-3. A Digital Multimeter Measuring Current

21.4 Measure Current | 393

Discussion
DMMs measure the current flowing by measuring the voltage across a very low-value
resistor. This is why you generally have to shift the probe leads to a different socket
when measuring current.

Don’t Forget to Swap the Leads Back

If you leave the leads of the multimeter in their current measuring
sockets and then go to measure voltage, you will effectively short-
out the voltage you are trying to measure. This may damage the
circuit or blow a fuse inside the multimeter.
To prevent this, always swap the leads back to their voltage-
measuring positions when you are finished measuring current.
If you do blow the fuse in your multimeter, you should be able to
open up your multimeter’s case and change the fuse.

See Also
To measure voltage, DC, and AC, see Recipe 21.2 and Recipe 21.3, respectively.

Most bench power supplies (Recipe 21.1) will also include an ammeter to tell you
how much current is being drawn.

21.5 Measure Continuity
Problem
You have a wire, a copper track, or a fuse and you can’t see a break in the connection
but you want to test it electrically.

Solution
Disconnect the wire so that it is not in use and then use the continuity setting on your
multimeter and connect the probes to each end of the thing you want to test.

If you are testing a long multicore cable (i.e., in situ and too long for the multimeter
leads to reach both ends), you can connect the separate cores together at one end of
the cable and test for continuity at the other, as shown in Figure 21-4.

Discussion
After DC voltage, continuity is probably the setting you are most likely to use on your
multimeter. It is particularly useful if your multimeter makes a beeping noise when

394 | Chapter 21: Tools

the resistance is low enough to indicate continuity. This allows you to move the test
probes around without having to look at the multimeter’s screen.

Figure 21-4. Testing a Long Cable for Continuity

See Also
Recipe 21.2 provides an introduction to multimeters.

21.6 Measure Resistance, Capacitance, or Inductance
Problem
You want to measure resistance, capacitance, or inductance (L) using a multimeter.

Solution
Nearly all multimeters will have several resistance ranges, and many will have a few
capacitance ranges as well.

To use these ranges, simply select the range and attach the component to the test
leads. You may find that as with measuring current, the test leads have to be inserted
into different sockets on the multimeter when using these measurement ranges.

Discussion
Some DMMs will offer inductance and frequency ranges, and specialized meters are
available for measuring resistance, capacitance, and inductance more accurately than
the average DMM can.

21.6 Measure Resistance, Capacitance, or Inductance | 395

Some of these will actually allow you to just attach test leads to any component and
the meter will first identify it and then measure its properties. Amazingly, such
meters are available on eBay as a kit to assemble yourself for around $10.

When measuring component values, do not be seduced into thinking you are making
a very accurate measurement of a component value because of the precision of the
result. A reading of 1.23µF may still have a measurement of ±10%, so check the speci‐
fication for your meter.

See Also
Recipe 21.2 provides an introduction to multimeters.

21.7 Discharge Capacitors
Problem
You have a large capacitor that could be holding a lot of energy and you want to safely
discharge it.

Solution
Disconnect the circuit and then use a resistor in parallel with the capacitor to dis‐
charge the capacitor until the voltage across it has reached a safe level as indicated by
a multimeter set to its DC-voltage setting.

When discharging the capacitor, you can either connect the resistor using insulated
crocodile clips, or if access is good enough, bend the resistor leads to the correct gap
and then hold the resistor with pliers, carefully touching the capacitor leads as shown
in Figure 21-5.

Calculate the resistance and the power rating of the resistor such that the capacitor
discharges in a reasonable amount of time without the resistor becoming too hot.

The time constant (RC) is the time in seconds for the capacitor’s voltage to drop to
63.2% of its original value. For example, if you have a 100µF capacitor charged to
300V (you might find this in a photographic flashgun) and you want to discharge the
capacitor to a safe 10V, a resistor of 10kΩ would have a time constant of 1 second. So
holding it to the capacitor for 1 second would reduce the voltage to 190V, a further
second to 120V, and so on. So, after 7 seconds, the voltage would be down to a safe
7.6V.

You can calculate the maximum power the resistor will dissipate as heat using:

P = V2

R

396 | Chapter 21: Tools

Figure 21-5. Discharging a Capacitor

which in this case would be 9W. That’s quite a physically big resistor, so failing to do a
rough calculation and using a standard ¼W resistor is likely to end in a puff of smoke
for the resistor.

Discussion
Increasing the resistance of the resistor decreases the power requirement of the resis‐
tor but will take longer for the capacitor to discharge. It is a good idea to monitor the
capacitor’s voltage with a multimeter while you discharge.

A capacitor charged to a high voltage is a dangerous thing, but a high-value capacitor
even at low voltages can cause massive currents to flow if its terminals are short
circuited and the capacitor has a low ESR.

See Also
For a calculation on the energy stored in a capacitor, see Recipe 3.7.

21.8 Measure High Voltages
Problem
You want to measure a voltage that is higher than the maximum voltage range of your
multimeter.

Solution
Use a voltage divider comprised of a ladder of equal-value resistors to reduce the volt‐
age to be measured. You will need to take into account the effect that the voltage
divider has on the voltage being measured and the input impedance of the multime‐
ter. Also, make sure the resistors used are rated for a high enough voltage.

21.8 Measure High Voltages | 397

Figure 21-6 shows how you might measure a voltage of around 5kV using a multime‐
ter with a maximum DC voltage measurement of 1000V and an imput impedance of
10MΩ.

Figure 21-6. Measuring a High Voltage Using a Voltage Divider

The voltage divider will reduce the input voltage by a factor of 10, making the sums
easier. Using 10 equal-value resistors (of 1% or better accuracy) is more likely to
result in better accuracy of the system overall if the resistors are from the same batch.
The closer the resistors are in value to each other the better the divider.

There are a few other things you need to consider. First, remember to calculate how
much the chain of resistors will load the output of the high-voltage source. In this
case, a load of 10MΩ across 10kV will result in current flowing at 1mA.

High-Voltage Leads

If you plan to measure high voltages, you will need special high-
voltage leads that are extremely well insulated to prevent sparking
across to your fingers. Your voltage divider should also be boxed
and not easy to accidentally touch.
Also, see Recipe 21.12.

398 | Chapter 21: Tools

The heat power generated by each resistor will be 1kV * 1mA = 1W, which is signifi‐
cant. The temptation is to use higher-value resistors (say 10MΩ) to reduce the power
and loading on the voltage source, but this will lead to the impedance of the multime‐
ter becoming significant and acting as two similar-value resistors in parallel, making
the reading almost useless.

A typical low-cost or medium-range multimeter will only have an input impedance of
10MΩ, which would result in the voltage reading being reduced by about 10% from
the actual voltage.

Discussion
You can determine the input impedance of your multimeter using the schematic
in Figure 21-7.

Figure 21-7. Finding the Input Impedance of Your Multimeter

To determine the input impedance of your multimeter (Z in Figure 21-7):

1. Accurately measure the voltage of a stable voltage source—say a regulated 5V
supply—by directly connecting the multimeter leads across it. Make a note of this
value (Vref).

2. Now place a resistor in series with the positive multimeter leads as shown in
Figure 21-7 and see what voltage the meter reads now (Vm). If there is little or no
change in the reading, then try a higher-value resistor (say 100MΩ) and congrat‐
ulations you have a high-quality multimeter.

3. Calculate the impedance of the meter (Z) using the formula:

Z = R
Vin

Vout
− 1

For example, with a value of R1 of 10MΩ and a 10V supply, my meter gave a Vm
reading of 4.7V. Plugging the numbers in you get:

Z = R
Vin

Vout
− 1

= 10M
10

4 . 7 − 1
= 10M

1 . 13 = 8 . 87MΩ

21.8 Measure High Voltages | 399

If you plan to measure high voltages on a regular basis, buy a specialist high-voltage
voltmeter. In addition to having a very high voltage range, these instruments also
usually have very high input impedance and do not load the circuit under test to the
extent that the voltage being measured is appreciably altered.

You can also use the preceding method using very high-value resistors if you buy a
high-quality multimeter with a buffered input that gives the multimeter an input
impedance in the hundreds of MΩ or even GΩ range.

See Also
For more information on using a resistor as a voltage divider, see Recipe 2.6.

For regular DC-voltage measurement, see Recipe 21.2.

21.9 Use an Oscilloscope
Problem
You want to use an oscilloscope to see the waveform of a signal.

Solution
Figure 21-8 shows a typical low-cost oscilloscope displaying a 1kHz 5V test signal
available from a terminal on the front of the oscilloscope.

To look at a signal on an oscilloscope:

1. Estimate the maximum signal voltage and set the y-axis gain to a value that will
allow you to see the whole signal on the screen. For example, in this case the sig‐
nal is 5V so setting the y-axis gain for the channel being used (channel A) to 2V/
division (little square on the screen) will be fine. If in doubt, set the volts/division
to its maximum value.

2. Set the trigger level to a height up the screen where the changing signal will cause
the scope to trigger, allowing you to see a stable image of the signal.

3. Adjust the x-axis timebase until the signal is stretched out enough to see the
shape of the waveform. In this case, the x-axis timebase is set to 500µS/division
so one whole waveform occupies two divisions (1ms), confirming the frequency
of 1kHz.

Discussion
Every model of oscilloscope is a little different, so you will need to consult the manual
for yours to find the controls used in the preceding instructions.

400 | Chapter 21: Tools

Figure 21-8. Displaying a Signal on an Oscilloscope

Most oscilloscopes, including the one shown in Figure 21-8, have two channels that
allow you to display two signals at the same time as well as a host of other features
such as automatic measurement of frequency and signal amplitude.

When choosing an oscilloscope to buy, you can spend from a few hundred dollars to
many thousands of dollars. You pay more for higher frequency range, better displays,
and more advanced features. A basic 20MHz oscilloscope like the one shown in
Figure 21-8 is a perfectly good starting point and has served me well for many years.

In addition to standalone oscilloscopes, you can also buy “PC scopes” that do not
have a screen but rather rely on a USB connection to the PC running the oscilloscope
software. As with standalone oscilloscopes, PC scopes are available at all prices and
qualities. I prefer a standalone device as it’s always there on my workbench and I don’t
have to wait for it to boot up, but many people find the extra features that often come
with a PC scope and the bigger and better display of a computer monitor outweigh
any disadvantages.

See Also
For more information on getting the most from your oscilloscope, get to know the
manual really thoroughly. You may find all sorts of features that are not immediately
obvious from the controls on the front.

21.9 Use an Oscilloscope | 401

21.10 Use a Function Generator
Problem
You need a test signal at a certain frequency, a certain amplitude, DC offset, and
waveform shape, perhaps to test an amplifier or filter.

Solution
Use a function generator (a.k.a. a signal generator).

The function generator shown in Figure 21-9 is a typical low-cost function generator
capable of generating two independent sine, square, or triangle waveforms of up to 20
MHz.

To use the function generator:

• Turn its output off
• Set the waveform you want (sine and square are the most common)
• Set the p-p (peak-to-peak) amplitude
• Set the DC offset
• Optionally attach one channel of an oscilloscope to the signal and test it appears

as expected by turning on the signal generator’s output for a moment
• Connect the signal-generator output to the input of the circuit you are testing
• Turn the signal-generator output on

Figure 21-9. A Low-cost DDS (Direct Digital Synthesis) Function Generator

402 | Chapter 21: Tools

Don’t Forget DC Offset

If you have a single-supply amplifier or other circuit, if the input
signal is swinging negative on each cycle, you may damage the cir‐
cuit you are testing.
Signal generators with digital controls, like the one shown in
Figure 21-9, assume a full AC signal and a DC offset have to be
explicitly set.

Discussion
Figure 21-10 shows the oscilloscope trace for a 10kHz sinewave with an amplitude of
2V peak-to-peak and a DC offset of 2.5V generated by the function.

See Also
If you are on a budget, you can make your own oscillator as shown in Recipe 16.5.

Figure 21-10. Waveform Amplitude and DC Offset

21.11 Simulation
Problem
You want to be able to simulate how a circuit will behave before you make it, perhaps
simulating how well a filter will work.

21.11 Simulation | 403

Solution
Use circuit-simulator software.

A free online circuit simulator is a great way to get started with circuit simulation.
The PartSim is one such easy-to-use simulator. Sign up for a PartSim account and
then start drawing your schematic in the simulator. Figure 21-11 shows the schematic
for the simple RC filter from Recipe 16.3.

In addition to drawing R1 and C1, you can also specify an AC-voltage source to drive
it. In this case, as the parameter in Figure 21-11 suggests, the test signal will be a 5V
square wave (pulse) with rise and fall times of 1µs, a pulse length of 15µs, and an
overall period of 30µs. This corresponds roughly to the 32.7kHz carrier signal of
Recipe 16.3.

Figure 21-11. PartSim Schematic Editor

When you click the Run button you will be prompted to enter some parameters for a
simulation as shown in Figure 21-12.

404 | Chapter 21: Tools

http://partsim.com

There are various types of simulations that can be run, but in this case we are interes‐
ted in the “Transient Response.” The Start and Stop times determine how long the
simulation will run and the Time Step is the step between each calculated value in the
simulation.

Figure 21-12. Simulation Parameters

When you click Run, you will see a new tab appear in the window with the name
“transient response” that shows the result of the simulation as shown in Figure 21-13.

You can see that the output is indeed greatly attenuated by the RC filter.

Discussion
Simulation is very useful in analog design, not least because it tells you how the cir‐
cuit should behave, whereas a signal generator and oscilloscope will tell you how just
one prototype behaves. A physical prototype has the problem that there may be a
fault in its construction or components that causes it to behave differently when you
make a second prototype. Simulation will tell you what to expect in a reliable and
consistent manner.

In addition to idealized components like resistors, capacitors, and perfect op-amps,
simulators like PartSim also have a huge array of “models” for actual components,
including specific op-amp models.

21.11 Simulation | 405

Figure 21-13. PartSim Simulation Results

See Also
PartSim is based on the open source SPICE simulation software; learn more at: http://
bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/.

21.12 Working Safely with High Voltages
Problem
You want to work safely with high voltages and avoid electrocution, burns, and fires.

Solution
Assume that coming into contact with a high voltage will kill you.

Although a little hyperbolic, this statement is a good thing to keep at the front of your
mind when working with high voltages. Frankly anything above 50V should scare

406 | Chapter 21: Tools

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

you. So AC with its fatal combination of high voltage and high availability of current
should scare you a lot.

Here are some rules I stick to when working on AC:

• If you are not sure you have the skills and experience to work on AC, find a
friend to help you who does, or do something else.

• Never work on a project while it is connected to AC. I actually put the plug in
front of me, so that I can see it’s not plugged in. Don’t rely on the outlet switch.

• Don’t do this kind of work if you feel tired. That’s when mistakes happen.
• Always discharge any capacitors in the project (see Recipe 21.7).
• If you make a project using high voltages, always make sure it is enclosed so that

other people cannot accidentally get shocked.
• Connect any metal of your project to earth.
• Use standard connectors (such as “kettle leads”) that are correctly rated for the

voltage and current you are using.
• Think about what you are doing and check everything before you power up.

Discussion
According to the American Burn Association:

In the United States, on average of 400 people die from electrocution and 4,400 are
injured each year because of electrical hazards.

In addition to the risk of a current flowing through your heart and stopping it, burns
caused by your body effectively acting as a heating element as well as arcing sparks
are risks associated with high voltages.

See Also
For the full American Burn Association report, see: http://www.ameriburn.org/
Preven/ElectricalSafetyEducator’sGuide.pdf.

21.12 Working Safely with High Voltages | 407

http://www.ameriburn.org/Preven/ElectricalSafetyEducator'sGuide.pdf
http://www.ameriburn.org/Preven/ElectricalSafetyEducator'sGuide.pdf

APPENDIX A

Parts and Suppliers

Parts
The following tables will help you to find the parts used in this book. Where possible,
I have listed product codes for suppliers.

There are now many electronic component suppliers that cater to the maker and elec‐
tronics hobbyist. Some of the most popular are listed in Table A-1.

Table A-1. Parts Suppliers
Supplier Website Notes
Adafruit http://www.adafruit.com Good for modules

DigiKey http://www.digikey.com/ Wide range of components

MakerShed http://www.makershed.com/ Good for modules, kits, and tools

MCM Electronics http://www.mcmelectronics.com/ Wide range of components

Mouser http://www.mouser.com Wide range of components

SeeedStudio http://www.seeedstudio.com/ Interesting low-cost modules

SparkFun http://www.sparkfun.com Good for modules

MonkMakes http://www.monkmakes.com Electronic Kits for Raspberry Pi, etc.
Pimoroni https://shop.pimoroni.com Raspberry Pi and Arduino

Polulu https://www.pololu.com/ Great for motor controllers and robots

CPC http://cpc.farnell.com/ UK-based, wide range of components

Farnell http://www.farnell.com/ International, wide range of components

Maplin http://www.maplin.co.uk/ UK-based, bricks and mortar, Raspberry Pi and Arduino

Proto-pic http://proto-pic.co.uk/ UK-based, stock SparkFun, and Adafruit modules

The other great source for components is eBay.

409

http://www.adafruit.com
http://www.digikey.com/
http://www.makershed.com/
http://www.mcmelectronics.com/
http://www.mouser.com
http://www.seeedstudio.com/
http://www.sparkfun.com
http://www.monkmakes.com
https://shop.pimoroni.com
https://www.pololu.com/
http://cpc.farnell.com/
http://www.farnell.com/
http://www.maplin.co.uk/
http://proto-pic.co.uk/

Searching for components can be time consuming and difficult. The Octopart com‐
ponent search engine can be very helpful for tracking down parts.

Prototyping Equipment
Many of the hardware projects in this book use jumper wires of various sorts. Male-
to-female leads (to connect the Raspberry Pi GPIO connector to a breadboard) and
male-to-male (to make connections on the breadboard) are particularly useful.
Female-to-female are occasionally useful for connecting modules directly to GPIO
pins. You rarely need leads longer than 3 inches (75mm). Table A-2 lists some jumper
wire and breadboard specifications, along with their suppliers.

A handy way to get started with breadboard, jumper wires, and some components to
get you started is to buy a starter kit like the Hacking Electronics Kit or Electronics
Starter Kit for Raspberry Pi by MonkMakes.com.

Table A-2. Prototyping Equipment
Description Suppliers
M-M jumper wires SparkFun: PRT-08431, Adafruit: 759, DigiKey: PRT-08431-ND

M-F jumper wires SparkFun: PRT-09140, Adafruit: 825, DigiKey: PRT-09140-ND

F-F jumper wires SparkFun: PRT-08430, Adafruit: 794, DigiKey: PRT-08430-ND

Half-sized breadboard SparkFun: PRT-09567 Adafruit: 64, DigiKey: 377-2094-ND

Raspberry Leaf (26 pin) Adafruit: 1772
Raspberry Leaf (40 pin) Adafruit: 2196
Electronics Starter Kit for Raspberry Pi Amazon, monkmakes.com
Monk Makes Protoboard Amazon, monkmakes.com/pb
Adafruit PermaProto for Pi (half breadboard) Adafruit: 1148
Adafruit PermaProto for Pi (full breadboard) Adafruit: 1135
Adafruit PermaProto HAT Adafruit: 2314, DigiKey: 1528-1370-ND
DC barrel jack to screw terminal adapter (female) Adafruit: 368, DigiKey: 1528-1386-ND

Resistors
Table A-3 lists resistors used in this cookbook and some suppliers.

Table A-3. Resistors
10Ω 0.25W resistor Mouser: 293-10-RC, DigiKey: 10QBK-ND
22Ω 0.25W resistor Mouser: 293-22-RC, DigiKey: 22QBK-ND
100Ω 0.25W resistor Mouser: 293-100-RC, DigiKey: 100QBK-ND
120Ω 0.25W resistor Mouser: 293-120-RC, DigiKey: 120QBK-ND

410 | Appendix A: Parts and Suppliers

http://www.octopart.com
http://www.octopart.com
http://monkmakes.com

150Ω 0.25W resistor Mouser: 293-150-RC, DigiKey: 150QBK-ND

270Ω 0.25W resistor Mouser: 293-270-RC, DigiKey: 270QBK-ND

330Ω 0.25W resistor Mouser: 293-330-RC, DigiKey: 330QBK-ND

470Ω 0.25W resistor Mouser: 293-470-RC, DigiKey: 470QBK-ND

1kΩ 0.25W resistor Mouser: 293-1k-RC, DigiKey: 1.0kQBK-ND

3.3kΩ 0.25W resistor Mouser: 293-3.3k-RC, DigiKey: 3.3kQBK-ND

4.7kΩ 0.25W resistor Mouser: 293-4.7k-RC, DigiKey: 4.7kQBK-ND

10kΩ 0.25W resistor Mouser: 293-10k-RC, DigiKey: 10kQBK-ND
22kΩ 0.25W resistor Mouser: 293-22k-RC, DigiKey: 22kQBK-ND
33kΩ 0.25W resistor Mouser: 293-33k-RC, DigiKey: 33kQBK-ND
100kΩ 0.25W resistor Mouser: 293-100k-RC, DigiKey: 100kQBK-ND
180kΩ 0.25W resistor Mouser: 293-180k-RC, DigiKey: 180kQBK-ND
1MΩ 0.25W resistor Mouser: 293-1M-RC, DigiKey: 1.0MQBK-ND
1.8MΩ 0.25W resistor Mouser: 293-1.8M-RC, DigiKey: 1.8MQBK-ND

10 kΩ trimpot Adafruit: 356, SparkFun: COM-09806, Mouser: 652-3362F-1-103LF, DigiKey:
3386P-103TLF-ND

Photoresistor Adafruit: 161, SparkFun: SEN-09088, DigiKey: NSL-5152-ND

Thermistor T0 of 1k Beta 3800 NTC Mouser: 871-B57164K102J (note Beta is 3730), DigiKey: 495-75312-ND

Capacitors and Inductors
Table A-4 lists resistors and capacitors used in this cookbook and some suppliers.

Table A-4. Resistors and Capacitors
1nF 50V DigiKey: BC2659CT-ND, Mouser: 594-K102J15C0GF5TH5

10nF 50V DigiKey: BC2662CT-ND, Mouser: 594-K103K15X7RF5UL2

10nF 1000V DigiKey: 1255PH-ND, Mouser: 81-RDER73A103K3M1H3A
100nF 50V DigiKey: 399-4151-ND, Mouser: 594-K104K15X7RF53L2
100nF 400V DigiKey: EF4104-ND, Mouser: 581-SR758C104KAATR1
220nF 50V DigiKey: BC2678CT-ND, Mouser: 594-K224K20X7RF5TH5
330nF 50V DigiKey: 399-9882-1-ND, Mouser: 80-C330C334K5R
680nF 50V DigiKey: 445-8519-ND, Mouser: 81-RCER71H684K2M1H3A
1µF 16V DigiKey: 445-8614-ND, Mouser: 539-SN010M025ST
4.7µF 16V DigiKey: 493-10248-1-ND, Mouser: 647-UMA1C4R7MCD2
10µF 16V DigiKey: 493-10245-1-ND, Mouser: 667-ECE-A1CKS100
100µF 16V DigiKey: P16379CT-ND, Mouser: 598-107CKS016M
220µF 25V DigiKey: 493-6082-ND, Mouser: 667-EEU-FM1E221
470µF 35V DigiKey: 493-12724-1-ND, Mouser: 667-ECA-1VM471
1000µF 25V DigiKey: 493-12690-1-ND, Mouser: 667-EEU-FC1E102L
390nH 100mA DigiKey: 445-1010-1-ND, Mouser: 542-9230-10-RC
4.7µH 250mA DigiKey: 495-5567-1-ND, Mouser: 70-IR04RU4R7K

Parts and Suppliers | 411

22uH 3A Inductor DigiKey: 495-5590-1-ND, Mouser: 580-12RS223C
33uH 3A Inductor DigiKey: 495-5705-1-ND, Mouser: 963-LHL13NB330K

Transistors, Diodes
Table A-5 lists transistors and diodes used in this cookbook and some suppliers.

Table A-5. Transistors and Diodes
FQP30N06L N-channel logic-level MOSFET
transistor

Mouser: 512-FQP30N06L, SparkFun: COM-10213, DigiKey: FQP30N06L-ND

FQP27P06 P-channel MOSFET transistor SparkFun: COM-10349, Mouser: 512-FQP27P06, DigiKey: FQP27P06-ND

2N3904 NPN bipolar transistor SparkFun: COM-00521, Adafruit: 756, Mouser: 512-2N3904BU,
DigiKey: 2N3904TAFSCT-ND

2N3906 PNP bipolar transistor SparkFun: COM-00522, Mouser: 512-2N3906TA, DigiKey: 2N3906-APCT-
ND

TIP120 Darlington transistor Adafruit: 976, CPC: SC10999, Mouser: 511-TIP120, DigiKey: TIP120-ND
2N7000 MOSFET transistor Mouser: 512-2N7000, CPC: SC06951, DigiKey: 2N7000TACT-ND
STGF3NC120HD IGBT Mouser: 511-STGF3NC120HD, DigiKey: 497-4353-5-ND
IRG4PC30UPBF IGBT Mouser: 942-IRG4PC30UPBF

1N4001 diode Mouser: 512-1N4001, SparkFun: COM-08589, Adafruit: 755,
DigiKey: 1N4001DICT-ND

1N4004 diode Mouser: 512-1N4004, DigiKey: 1N4004FSCT-ND

1N4007 diode (1000V) Mouser: 821-1N4007, DigiKey: 1N4007FSCT-ND
1N4148 diode Mouser: 512-1N4148, DigiKey: 1N4148FS-ND
1N5819 Schottky
diode

Mouser: 512-1N5819, DigiKey: 1N5819FSCT-ND

1N5919 5.6V Zener diode Mouser: 863-1N5919BG, DigiKey: 1N5919BGOS-ND
BT136 TRIAC Mouser: 583-BT136, DigiKey: 568-12097-5-ND

Figure A-1 shows the pinouts for the transistors listed in this section.

412 | Appendix A: Parts and Suppliers

Figure A-1. Transistor Pinouts

Parts and Suppliers | 413

Integrated Circuits
Table A-6 lists ICs used throughout this cookbook and some suppliers. These are lis‐
ted in alphabetical order by part name.

Table A-6. Integrated Circuits
74HC00 quad NAND DigiKey: 296-1563-5-ND, Mouser: 595-SN74HC00N
74HC4017 counter decoder DigiKey: 296-25989-5-ND, Mouser: 595-CD74HC4017E
74HC4094 shift register DigiKey: 296-26002-5-ND , Mouser: 595-CD74HC4094E
74HC590 counter DigiKey: 296-1599-5-ND, Mouser: 595-SN74HC590AN
CD4047 oscillator DigiKey: 296-2053-5-ND, Mouser: 595-CD4047BEE4

DS18B20 temperature sensor SparkFun: SEN-00245, Adafruit: 374, Mouser: 700-DS18B20, CPC: SC10426,
DigiKey: DS18B20+-ND

L293D motor driver SparkFun: COM-00315, Adafruit: 807, Mouser: 511-L293D, CPC: SC10241,
DigiKey: 497-2936-5-ND

LM2596-5V switcher DigiKey: LM2596T-5.0/NOPB-ND, Mouser:
LM311 comparator DigiKey: 296-1389-5-ND, Mouser: 926-LM311N/NOPB
LM317 adjustable voltage regulator DigiKey: LM317AHVT-ND , Mouser: 595-LM317KCSE3
LM321 op-amp DigiKey: LM321MFX/NOPBCT-ND, Mouser: 926-LM321MF/NOPB
LM741 op-amp DigiKey: LM741CNNS/NOPB-ND, Mouser: 926-LM741CN/NOPB

LM7805 voltage regulator SparkFun: COM-00107, Adafruit: 2164, Mouser: 511-L7805CV, CPC: SC10586, DigiKey:
497-1443-5-ND

LM78L12 voltage regulator DigiKey: LM78L12ACZFS-ND, Mouser: 512-LM78L12ACZ
LM79L12 voltage regulator DigiKey: LM79L12ACZ/NOPB-ND, Mouser: 926-LM79L12ACZ/NOPB
MAX2606 VCO DigiKey: MAX2606EUT+TCT-ND , Mouser: 700-MAX2606EUTT

MCP3008 eight-channel ADC IC Adafruit: 856, Mouser: 579-MCP3008-I/P, CPC: SC12789, DigiKey: MCP3008-I/P-ND

MCP73831 LiPo charger IC DigiKey: MCP73831T-2DCI/OTCT-ND, Mouser: 579-MCP73831T5ACIOT
NE555 timer SparkFun: COM-09273, DigiKey: 296-1411-5-ND, Mouser: 595-NE555P
OPA365 op-amp DigiKey: 296-20645-1-ND, Mouser: 595-OPA365AIDBVR
TDA7052 1W power amp DigiKey: 568-1138-5-ND, Mouser: 771-TDA7052ATN2112
TLV2770 op-amp DigiKey: 296-1897-5-ND, Mouser: 595-TLV2770IP
TPA3122D2 15W power amp DigiKey: 296-23375-5-ND , Mouser: 595-TPA3122D2N

TMP36 temperature sensor SparkFun: SEN-10988, Adafruit: 165, Mouser: 584-TMP36GT9Z, CPC: SC10437,
DigiKey: TMP36GT9Z-ND

TPS61070 boost converter DigiKey: 296-17151-1-ND, Mouser: 595-TPS61070DDCR

ULN2803 Darlington driver IC SparkFun: COM-00312, Adafruit: 970, Mouser: 511-ULN2803A, CPC: SC08607,
DigiKey: 497-2356-5-ND

WS2812 pixel chip DigiKey: 28085-ND
MOC3032 opto-isolator DigiKey: MOC3032M-ND, Mouser: 512-MOC3032M

Figure A-2 shows the pinouts for the ICs listed in this section.

414 | Appendix A: Parts and Suppliers

Figure A-2. IC Pinouts

Parts and Suppliers | 415

Opto-Electronics
Table A-7 lists opto-electronic components used throughout this cookbook and some
suppliers.

Table A-7. Opto-electronics
5mm red LED SparkFun: COM-09590, Adafruit: 299, Mouser: 630-

HLMP-3301, DigiKey: 160-1853-ND

RGB common cathode LED SparkFun: COM-11120, Mouser: 713-104990023, eBay

TSOP38238 IR sensor SparkFun: SEN-10266, Adafruit: 157

4-digit 7-segment common cathode LED display DigiKey: 67-1450-ND

Modules
Table A-8 lists the modules used in this cookbook and other modules I like.

Table A-8. Modules
Arduino Uno SparkFun: DEV-11021, Adafruit: 50, CPC: A000066, DigiKey: 1050-1024-

ND

Raspberry Pi3 Adafruit: 3055, DigiKey: 1690-1000-ND

Level converter, four-way SparkFun: BOB-11978, Adafruit: 757

Level converter, eight-way Adafruit: 395

LiPo boost converter/charger SparkFun: PRT-11231

PowerSwitch tail Adafruit: 268

Monk Makes ServoSix board monkmakes.com, Amazon

16-channel servocontroller Adafruit: 815

Motor driver 1A dual SparkFun: ROB-09457

RasPiRobot board V3 Adafruit: 1940, Amazon

PIR motion detector Adafruit: 189

4x7-segment LED with I2C backpack Adafruit: 878

Bicolor LED square-pixel matrix with I2C backpack Adafruit: 902

16 x 2 HD44780 compatible LCD module SparkFun: LCD-00255, Adafruit: 181

SSD1306-based 0.96 or 1.2in OLED display eBay
Stepper motor HAT Adafruit: 2348
16-channel PWM HAT Adafruit: 2327
Squid Button monkmakes.com, Amazon
Raspberry Squid RGB LED monkmakes.com, Amazon
I2C OLED display 128x64 pixels eBay
Adafruit Lipo charger module Adafruit: 1905
SparkFun LiPo charger module SparkFun: PRT-10217
CC1101 RF transceiver module eBay

416 | Appendix A: Parts and Suppliers

Miscellaneous
Table A-9 lists miscellaneous tools and components used in this cookbook and some
suppliers.

Table A-9. Miscellaneous
1200mAh LiPo battery Adafruit: 258

5V relay SparkFun: COM-00100

Standard servomotor SparkFun: ROB-09065, Adafruit: 1449

9g mini servomotor Adafruit: 169

5V 1A power supply Adafruit: 276

Low power 6V DC motor Adafruit: 711

0.1-inch header pins SparkFun: PRT-00116, Adafruit: 392

5V 5-pin unipolar stepper motor Adafruit: 858

12V, 4-pin bipolar stepper motor Adafruit: 324

Tactile push switch SparkFun: COM-00097, Adafruit: 504

Miniature slide switch SparkFun: COM-09609, Adafruit: 805

Rotary encoder (quadrature) Adafruit: 377

4x3 keypad SparkFun: COM-08653

Piezo buzzer SparkFun: COM-07950, Adafruit: 160

Reed switch Adafruit: 375
Loudspeaker 8Ω 1W Adafruit: 1313

Equipment
There are many choices here. I would always say start with low-cost equipment and
upgrade as and when you feel the need. After all, if you were learning the violin, it
would be foolish to start with a Stradivarius!

The items listed in Table A-10 are similar to those I use every day and serve as a guide
to help you get started. You should shop around; there are some great bargains to be
had.

Table A-10. Equipment
Basic multimeter Monk Makes Hacking Electronics Kit, eBay

Better multimeter (Tenma 72-7725) Amazon, eBay
Entry-level oscilloscope Adafruit: 681
Bench power supply DigiKey: BK1550-220V-ND
Good soldering station SparkFun: TOL-11704
Fume extractor eBay
Thermal heatsink compound eBay

Parts and Suppliers | 417

APPENDIX B

Arduino Pinouts

Arduino Uno R3
Figure B-1 shows the pinout for the Arduino Uno R3.

Figure B-1. Arduino Uno R3 GPIO Pinout

419

Arduino Pro Mini
Figure B-2 shows the pinout for the Arduino Pro Mini.

Figure B-2. Arduino Uno Pro Mini Pinout

420 | Appendix B: Arduino Pinouts

APPENDIX C

Raspberry Pi Pinouts

Raspberry Pi 2 Model B, B+, A+, Zero
Figure C-1 shows the pinouts for the current 40-pin GPIO Raspberry Pi.

Figure C-1. 40-pin Raspberry Pi GPIO Pinout

Raspberry Pi Model B, Rev. 2, A
If you have an Raspberry Pi, it is most likely the model B rev. 2 board shown in
Figure C-2.

421

Figure C-2. Raspberry Pi Model B rev. 2 and Model A GPIO Pinout

Raspberry Pi Model B, Rev. 1
The very first released version of the Raspberry Pi model B (rev. 1) has some minor
pinout differences from the rev. 2 that followed. This is the only version of the Rasp‐
berry Pi that is not compatible with later pinouts. The incompatible pins that changed
are highlighted in bold in Figure C-3.

Figure C-3. Raspberry Pi Model B Rev. 1 GPIO Pinout

422 | Appendix C: Raspberry Pi Pinouts

APPENDIX D

Units and Prefixes

Units
Table D-1 lists the most common units used in electronics along with the typical
ranges of those units you might find in practice.

Table D-1. Common Units and their Typical Ranges of Values

Property Unit Typical range

Current A (Ampere) 100nA to 100A

Voltage V (Volt) 1mV to 1000V

Resistance Ω (Ohm) 10mΩ to 20MΩ

Energy J (Joule) 1J to 1MJ

Watt W (Watt) 1mW to 10kW

Capacitance F (Farad) 10pF to 10F

Inductance H (Henry)

Frequency Hz (Hertz) sound 20Hz to 20kHz
radio 3kHz to 300GHz

Unit Prefixes
Table D-2 shows the unit prefixes applied to electronic and other units. You will
sometimes find R used in place of Ω and u in place of µ.

Table D-2. Unit Prefixes

Prefix Multiplier Scientific

p (pico) 1/1,000,000,000,000 10E-12

n (nano) 1/1,000,000,000 10E-9

423

Prefix Multiplier Scientific

µ (micro) 1/1,000,000 10E-6

m (milli) 1/1,000 10E-3

k (kilo) 1,000 10E3

M (mega) 1,000,000 10E6

G (giga) 1,000,000,000 10E9

424 | Appendix D: Units and Prefixes

Index

Symbols
2N3904 transistors, 56, 65, 105, 177
2N7000 transistors, 61, 174, 177
555 timers

applying PWM to analog signals, 309
controlling motor speed, 306
frequency provided by, 100
low-cost oscillators, 301
one-shot timers, 305
used as oscillators, 95
variable duty cycle oscillators, 303
voltage-controlled oscillators (VCO), 310

7-segment displays, 256, 271
74HC IC, 283
74HC00 IC, 288
74HC4017 IC, 290
74HC4094 IC, 284
74HC590 IC, 289
7805 linear voltage regulators, 87
Ω (Ohms), 5, 11

A
A (amperes), 1
AC (alternating current)

boosting AC voltage, 98
converting, 41
converting AC to DC (full-wave rectifica‐

tion), 85
converting AC to DC (half-wave rectifica‐

tion), 83
converting AC to regulated DC, 87
converting AC to variable DC, 89
converting DC to AC, 94
converting one voltage to another, 82

vs. direct current, 8
measuring voltage, 392
safety warning, 67, 95, 406
switching, 67

acknowledgments, xvii
Adafruit CharLCD Python library, 279
ADC IC, 203-206
addressable LED strips, 268
adjustable voltage regulators, 89
Ah (ampere hours), 111
air gaps, 30
alphanumeric displays, 277
alternating current (see AC (alternating cur‐

rent))
AM (amplitude modulation), 349
ambient sounds, 340

(see also audio electronics)
American Wire Gauge (AWG) standard, 25
ampere hours (Ah), 111
amperes (amps), 1
amplifiers (see operational amplifiers; power

amplifiers)
amplitude modulation (AM), 349

(see also radio frequency)
analog designs, 293-313

applying PWM to analog signals, 308
avoiding voltage drops, 299
circuit-simulator software, 403
controlling motor speed, 306
decibel measurement, 311
filtering out high frequencies, 293
flashing LEDs, 297
flashing LEDs in series, 298
low-cost oscillators, 301

425

one-shot timers, 305
ring oscillators, 298
simple oscillators, 297
variable duty cycle oscillators, 303
voltage-controlled oscillators (VCO), 310

Analog Filter Wizard, 325, 328
analogRead function (Arduino), 155
analogWrite function (Arduino), 157
Arduino boards

alternatives to, 143
analog input from ICs, 212
analog input from resistive sensors, 201
Arduino Uno R3, 135, 146, 159
AREF (analog reference) pin, 156
attaching multiple sensors to, 217
attaching transceivers to, 359
benefits of, 138
blink sketch, 149
changing LED colors, 264
Charlieplexing technique for multiple LED

control, 259
components included, 136
connecting breadboards to, 370
connecting electret microphones, 341
connecting high-power LEDs to, 252
connecting I2C display modules, 272
connecting standard LEDs to, 249
connecting switches to, 191
connecting to alphanumeric LCD displays,

277
connecting to digital inputs, 151
connecting to I2C OLED displays, 275
connecting to prototyping boards, 373
controlling addressable LED strips, 268
controlling bipolar stepper motors, 238
controlling DC motor direction, 229
controlling digital outputs with, 149
controlling relays, 184
controlling servomotors, 233
controlling solid-state relays, 187
controlling unipolar stepper motors, 243
current limits, 170
downloading sketches, 139
extending number of GPIO pins, 284, 290
filtering out high frequencies, 294
FM receivers using, 357
generating analog output from, 157
GPIO features, 146
high-side switching, 172

installing Arduino IDE, 139
low-side switching, 169
measuring distance, 220
measuring humidity, 218
measuring light intensity, 206
measuring temperature, 207, 214
multiplexing technique for 7-segment dis‐

plays, 256
peripheral interfaces, 138
pinout diagram, 147, 419
playing sounds on, 336
programming language, 136
programming with Raspberry Pi, 142
reading analog inputs on, 155
rotational position, 197
signal level conversion, 165
solar power for, 130
switching components on and off, 145
switching several LEDs simultaneously, 256
switching with, 178

Arduino Serial Monitor, 151, 158
AREF (analog reference) pin, 156
astable transistor arrangement, 297
attribution, providing, xv
audio electronics, 335-348

building vs. ready-made, 336
common designs, 335
electret microphones, 340
making 10W power amplifiers, 345
making 1W power amplifiers, 343
playing sounds on Arduino boards, 336
playing sounds with Raspberry Pi, 339

automatic battery backups, 117
autoranging multimeters, 391, 392
AWG (American Wire Gauge) standard, 25

B
back-emf, 226
band-pass filters, 330, 350
base current, limiting, 58
base-emitter voltage, 299
batteries, 111-122 (see also power supplies;

solar power)
arranged in parallel, 112
arranged in serial, 112
automatic battery backups, 117
capacities and voltages, 113, 115
vs. capacitors, 33
charging LiPo batteries, 119

426 | Index

conditions affecting, 112
estimating battery life, 111
internal resistance of, 112, 114
rechargeable, 33, 111, 115
regulating battery voltage, 90
selecting nonrechargeable, 113
selecting rechargeable, 115
vs. supercapacitors, 38
trickle charging, 116
using all power in, 120

BCM pin mode (Raspberry Pi), 151
Bessel filters, 328
bipolar junction transistors (BJTs), 56, 171, 175,

176, 299
bipolar stepper motors, 238
bit banging, 165
BJTs (bipolar junction transistors), 56, 171, 175,

176, 299
blink sketch (Arduino), 149
blinky.py program, 150
BOARD pin mode (Raspberry Pi), 151
boost-converters, 93, 120
bounce (switches), 74, 192
breadboards

labelling on, 366
schematic tools for, 369
selecting, 365
solderless, 365
supply rails on, 366
transferring schematics to, 369

breakdown voltage (diodes), 49
breakout boards, 72
bridge rectifiers, 86
buck converters, 93
buffering signals, 323
Butterworth filters, 328
bypass capacitors, 281

C
C (capacity), 116
CAD (computer-aided design), 376
CadSoft EAGLE, 376
capacitance, measuring, 395
capacitors

100nF capacitors, 281
bypass capacitors, 281
charging/discharging, 30
connecting in parallel, 36
connecting in series, 37

discharging, 396
energy storage calculation, 39
energy storage using, 29, 38
ESR (equivalent series resistance), 35
list of with suppliers, 411
numbering system, 36
photo of, 34
purpose of, 29
vs. rechargeable batteries, 33
vs. resistors, 34
selecting, 33
standard values available, 36
supercapacitors, 33, 38
temperature ratings, 35
through-hole, 36
tolerance, 36
types of, 34
values of, factors affecting, 30
values of, high capacitance, 38
values of, in parallel, 36
values of, in series, 37
values of, reading, 35
voltage ratings, 35

carrier frequencies, 349
(see also radio frequency)

CC1101 RF transceivers, 359
CD4047 timers, 95
CharLCD Python library, 279
Charlieplexing technique, 260
Chebyshev filters, 328, 329
chip resistors, 21
chips (see digital integrated circuits; transistors

and integrated circuits (ICs))
choke inductors, 40
circuits

circuit-simulator software, 403
designing circuit boards, 376
permanent soldered, 372-375
solderless temporary, 365-370

class-D digital amplifiers, 345
CMOS (complementary metal-oxide semicon‐

ductor), 283
code, using examples from book, xv, 139, 141
comments and questions, xvi
common-cathode RGB LEDs, 264
common-emitter arrangements, 169
common-source arrangement, 173
comparators, 332
constant-current power supplies, 91

Index | 427

construction, 365-387
adding heatsinks, 385-387
designing circuit boards, 375
desoldering components, 384
permanent circuits, 372-375
prototyping equipment suppliers, 410
solderless temporary circuits, 365-370
surface-mount soldering, 379-384
through-hole soldering, 378

contact information, xvi
continuity, measuring, 394
corner frequency (f0), 296
current

calculating, 4
calculating at any point, 6
constant-current power supplies, 91
defined, 1
directional flow, 45
measuring in circuits, 393
modifying and moderating flow, 40
switching high current loads, 61
switching stronger using weaker, 56
switching with small control current, 59
wire gauge properties, 25

current gain (transistors), 57, 59

D
DallasTemperature library (Arduino), 215
Darlington transistors, 59
data, sending digital over radio connections,

359
DC (direct current)

vs. alternating current, 8
boosting DC voltage, 93
converting AC to DC (full-wave rectifica‐

tion), 85
converting AC to DC (half-wave rectifica‐

tion), 83
converting AC to regulated DC, 87
converting AC to variable DC, 89
converting DC to AC, 94
measuring voltage, 391
regulating DC power supplies, 92
safety warning, 100
voltage restrictions, 49

DC motors, 225
(see also motors)

decibels (dB), measuring, 311
decibels Absolute (dBA), 313

decimal counter ICs, 290
decoupling, 281
DesignSpark, 377
desoldering components, 384
DHT11 module, 218
digital data, sending over radio connections,

359
digital integrated circuits (ICs), 281-292

avoiding electrical noise errors, 281
decimal counter ICs, 290
decoupling, 281
digital toggle switches, 288
frequency-divider ICs, 289
logic-gate ICs, 283
vs. microcontrollers, 281
selecting, 281
serial-to-parallel shift registers, 284

digital multimeters (DMM), 391-396
digital radio, 353

(see also radio frequency)
digital switches, 56, 151, 154
digitalRead function (Arduino), 151
digitalWrite function (Arduino), 149
diodes

DC voltage restriction, 49
light-emitting (LEDs), 50
list of with suppliers, 412
photo of, 47
photodiodes, 52
polarity error protection, 108
power-handling capacity, 47
purpose of, 45
recovery time, 48
rectifier diodes, 46, 48
Schottky diodes, 108
snubbing diodes, 226
types of, 47
Zener diodes, 49, 300

direct current (see DC (direct current))
disc ceramic capacitors, 34
displays

7-segment, 256, 271
alphanumeric LCD displays, 277
I2C display modules, 271
OLED displays, 275

distance, measuring, 220
DPDT (double pole, double throw) switches, 76

(see also switches and relays)
DS18B20 IC, 210, 214

428 | Index

dual-gang potentiometers, 16

E
E24 series resistors, 14
E96 series resistors, 14
EAGLE CAD, 376
electret microphones, 340
electrical noise, 40, 281
electrolytic capacitors, 34
electronics

analog designs, 293-313
Arduino and Raspberry Pi, 135-167, 419,

421
audio, 335-348
batteries, 111-122
capacitors and inductors, 29-43
construction, 365-387
digital integrated circuits, 281-292
diodes, 45-53
getting started in, xi-xii
LEDs and displays, 249-280
motors, 225-247
online resources, xiv
operational amplifiers, 315-333
parts and suppliers, 409-417
power supplies, 81-109
radio frequency, 349-362
resistors, 11-27
safety warning, 67, 70, 95, 100, 379, 384, 406
sensors, 191-223
solar power, 123-133
switches and relays, 73-79
switching, 169-189
theory, 1-10
tools, 389-407
transistors and integrated circuits (ICs),

55-72
units and prefixes, 423

emitter-follower arrangements, 299
equivalent series resistance (ESR), 35, 37
ESP01 module, 144
ESP8266 modules, 144
ESR (equivalent series resistance), 35, 37

F
F (Farads), 38
ferrite chokes, 40
filter design tools, 325, 328, 403
fixed linear voltage regulators, 90

FM (frequency modulation), 352
forums, accessing, xiv
forward voltage (Vf), 48
forward-biased current flow, 46
FQP30N06 transistors, 61, 65
FQP30N06L transistors, 174
frequencies

filtering out high and low, 330
filtering out low, 328
reducing amplitude of high, 325

frequency modulation (FM), 352
frequency-divider ICs, 289
Fritzing, 369, 377
function generators, 402
fuses, 106

G
gain (transistors), 57, 59
gate resistors, 174
Geiger– Müller tubes, 99
Gerbers, 376
getEncoderTurn function (Arduino), 198
getting help, xiv
get_encoder_turn function (Raspberry Pi), 200
GND (ground), 3
GPIO (general-purpose input/output) pins,

135, 145
graphics, displaying, 275
ground (GND), 3

H
H-bridge ICs, 229
Hackaday, xiv
half-bridge configuration, 183
HC-SR04 module, 220
HD44780 IC, 277
HDMI connector (Raspberry Pi), 339
headphone-style jack sockets, 339
heatsinks, 385-387
help, obtaining, xiv
Hertz (Hz), 10
high frequencies

filtering out, 293, 330
reducing amplitude of, 325

high-impedance input voltage, 299
high-side switching, 171
HT16K33 IC, 274
humidity, measuring, 218
Hz (Hertz), 10

Index | 429

I
I2C peripherals, 162, 271, 275
IGBTs (insulated gate bipolar transistors), 63
impedance

defined, 52
determing in multimeters, 399

inductance, measuring, 395
inductors

choke inductors, 40
current flow modification, 40
list of with suppliers, 411
transformers, 41, 82, 83, 85

infrared (IR) light measurement, 52
input impedance, 399
Instructables, xiv
integrated circuits (ICs) (see digital integrated

circuits; transistors and integrated circuits
(ICs))

Internet of Things (IoT) projects, 140, 144
inverters, 94
inverting amplifiers, 320
IRG4PC30UPBF transistors, 64

J
joule thief circuits, 120
Joules, 8

K
KiCad, 377
Kirchhoff ’s Voltage Law, 7
Kirchhoff 's Current Law, 6, 112
knobs, rotating, 196

L
L (logic) version MOSFET, 65, 174
L293D IC, 229, 242
lab power supplies, 389-390
lead (Pb), 379
LEDs (light-emitting diodes) (see also analog

designs)
addressable LED strips, 268
changing colors of, 264
common-cathode RGB LEDs, 264
connecting standard, 249
controlling many, 259
driving high-power, 252
identifying LED pins, 251
identifying RGB LED pins, 265

isolating signals for safety, 69
OLED displays, 275
powering several simultaneously, 254
resistor value calculation, 50
switching several simultaneously, 256
uses for, 249
varying brightness in, 159

led_pin (Raspberry Pi), 151
light intensity, measuring, 22, 52, 68, 201, 206
linear voltage regulators, 87, 90, 92
linear-track potentiometers, 16
LiPo (lithium polymer) batteries, 115, 116, 119
LiquidCrystal library (Arduino), 279
LM2596 regulator, 92
LM2937 regulators, 88
LM311 regulators, 332
LM317 regulators, 89, 91, 252
LM35 IC, 212
load, defined, 84
logarithmic frequency scales, 325
logarithmic-track potentiometers, 16
logic-gate ICs, 283
loop function (Arduino), 149
loudspeakers, 337

(see also audio electronics)
low frequencies, filtering out, 328, 330
low-dropout (LDO) regulators, 88
low-side switching, 169, 176

M
mA (milliamps), 2
magnets, 77
mAh (milliampere hours), 111
MAX2606 IC, 354
MCP3008 IC, 203
MCP73831 IC, 119
mega ohms (MΩ), 11
microcontrollers (see also Arduino boards;

Raspberry Pi)
vs. digital integrated circuits, 281
list of popular, 143
low-side switching, 169
measuring rotation with, 211
photo of, 143
switching components on and off, 145
types of, 135

microphones, 340
microswitches, 195
milliampere hours (mAh), 111

430 | Index

milliamps (mAs), 2
milliohms (mΩ), 4, 11
MISO (master in slave out), 165
MLC (multilayer ceramic) capacitors, 34, 281
modules, list of with suppliers, 416
Monk Makes Protoboards, 366, 372
MOSFET transistors, 61, 108, 166, 173, 175,

176, 298
MOSI (master out slave in), 165
motors, 225-247

controlling direction of DC, 229
controlling speed of, 306
list of with suppliers, 417
measuring speed of DC, 227
moving precise number of steps, 238
setting to precise positions, 233
switching DC on and off, 226
types of, 225

Mozzi library (Arduino), 294, 338
MPSA14 transistors, 60, 65
multilayer ceramic (MLC) capacitors, 34, 281
multimeters

input impedance of, 399
measuring AC voltage with, 392
measuring continuity with, 394
measuring current with, 393
measuring DC voltage with, 391
measuring high voltages with, 397
measuring resistance, capacitance, or induc‐

tance with, 395
multiplexing technique, 256
MΩ (mega ohms), 11
mΩ (milliohms), 4, 11

N
N-channel MOSFETs, 61
NE555 timer IC

applying PWM to analog signals, 309
controlling motor speed, 306
low cost oscillators, 301
one-shot timers, 305
variable duty cycle oscillators, 303
voltage-controlled oscillators (VCO), 310

negative temperature coefficient (NTC) ther‐
mistors, 24

neopixels, 268
NiMh batteries, 115, 116
NodeMCU module, 144
noise prevention, 40, 281

noninverting amplifiers, 322
NPN (negative positive negative) transistors, 58
NTC (negative temperature coefficient) ther‐

mistors, 24
numbers, displaying, 277

O
Ohm's law, 4, 254
Ohms (Ω), 5, 11
OLED displays, 275
OMXPlayer (Raspberry Pi), 339
OneWire library (Arduino), 215
online help resources, xiv
OPA365, 340
open-collector outputs, 188
open-drain outputs, 189
operational amplifiers (op-amps), 315-333

benefits of, 316
buffering signals, 323
comparing voltages, 332
filtering out high and low frequencies, 330
filtering out low frequencies, 328
making inverting amplifiers, 320
making noninverting amplifiers, 322
powering (single supply), 319
powering (split supply), 318
purpose of, 315
reducing amplitude of high frequencies, 325
schematic diagram of, 315
selecting, 316

optical sensors, 227
opto-couplers, 69, 416
oscillators

creating simple, 297
low-cost, 301
ring oscillators, 298
variable duty cycle, 303
voltage-controlled oscillators (VCO), 310

oscilloscopes, 400
overshoot, 329

P
P-channel MOSFETs, 61, 108
Particle Photon microcontroller, 144
parts and suppliers, 409-417

basic needs, 417
batteries, motors, switches, etc., 417
capacitors and inductors, 411
electronic components, 409

Index | 431

modules, 416
opto-electronics, 416
prototyping equipment, 410
resistors, 410
transistors and diodes, 412

PartSim simulator, 404
Pb (lead), 379
Permaproto breadboards, 366, 372
permissions, obtaining, xv
phase-locked-loop (PLL), 353
photodiodes, 52
photoresistors, 22, 201
phototransistors, 68, 69
photovoltaic solar cells, 52, 123
PiFM software (Raspberry Pi), 355
pinLEDstates (Arduino), 262
pinMode function (Arduino), 149
PNP (positive negative positive) transistors, 59,

172
polarity errors, 107
poles, 76
polyfuses, 106
positive temperature coefficient (PTC) thermis‐

tors, 24
potential dividers, 19
potentiometer (pots), 15, 89, 211
power

calculating, 8
defined, 8

power amplifiers
10W, 345
1W, 343

power ratings (resistors), 19, 21
power supplies, 81-109 (see also batteries; solar

power)
1kV and above, 102
450V, 99
allowing 110 and 220V, 97
boosting AC voltage, 98
boosting DC voltage, 93
constant-current supplies, 91
converting AC to AC, 82
converting AC to DC (full-wave rectifica‐

tion), 85
converting AC to DC (half-wave rectifica‐

tion), 83
converting AC to regulated DC, 87
converting AC to variable DC, 89
converting DC to AC, 94

fuses, 106
lab power supplies, 389-390
polarity error protection, 107
regulating battery voltage, 90
regulating DC voltage, 92
Tesla coils, 103
types of, 81

project ideas, xiv
Protoshield breadboards, 373
prototypes (see construction)
prototyping boards, 372
PTC (positive temperature coefficient) thermis‐

tors, 24
push-pull drivers (GPIO pins), 145
PWM (pulse-width modulation), 159
Python

analog input using, 204
digital input using, 154
downloading programs, 141
I2C library, 163

Q
Q (quality) factor (filters), 332
quadrature encoders, 196
questions and comments, xvi

R
R (Ohms), 11
radiation meters, 99
radio frequency

amplitude modulation (AM), 349
digital radio, 353
FM receivers, 357
frequency modulation (FM), 352
legal aspects of transmitters, 349
making FM transmitters, 354
noise prevention, 40
receiver operation, 350
sending digital data over, 359
software FM transmitters, 355

Raspberry Pi
alternatives to, 143
benefits of, 140
blinky.py program, 150
changing LED colors, 264
Charlieplexing technique for multiple LED

control, 259
configuration toolkit, 162, 164
connecting breadboards to, 370

432 | Index

connecting high-power LEDs to, 252
connecting standard LEDs to, 249
connecting switches to, 191
connecting thermistors, 209
connecting to alphanumeric LCD displays,

277
connecting to digital inputs, 154
connecting to I2C devices, 162, 271, 275
connecting to OLED displays, 275
connecting to prototyping boards, 373
connecting to SPI devices, 164
controlling addressable LED strips, 268
controlling bipolar stepper motors, 238
controlling DC motor direction, 231
controlling digital outputs with, 150
controlling relays, 184
controlling servomotors, 233
controlling solid-state relays, 187
controlling unipolar stepper motors, 243
current limits, 170
downloading programs for, 139, 141
extending number of GPIO pins, 284, 290
FM transmitter using, 355
generating analog output from, 160
GPIO features, 146
high-side switching, 172
installing Arduino IDE onto, 142
low-side switching, 169
maximum voltage allowed, 155
measuring analog input, 203, 204
measuring distance, 220
measuring humidity, 218
measuring light intensity, 206
measuring temperature, 207, 209, 214
models available, 140
multiplexing technique for 7-segment dis‐

plays, 256
operating system, 140
pinout diagram, 148, 421
playing sound with, 339
programming languages, 140
raspi-config tool, 162, 164
resistive sensors and, 201
rotational position, 198
RPi.GPIO library, 140, 150, 154, 160
running programs on startup, 142
signal level conversion, 165
solar power for, 132
switching components on and off, 145

switching several LEDs simultaneously, 256
switching with, 181

RC filters, 293
reactance, 40
rectification

commonly used diodes, 48
forward-based diodes, 46
full-wave, 85
half-wave, 83

reference voltages, 49
refreshDisplay function (Arduino), 259
relays (see switches and relays)
remote software updates, 144
reset-set (RS) flip-flop design, 304
resettable fuses, 106
resistance

calculating, 4
defined, 4
internal in batteries, 112, 114
measuring, 395
wire gauge properties, 24

resistors
base resistors, 58
vs. capacitors, 34
chip resistors, 21
color codes, 11
combining in parallel, 18
combining in series, 17
E24 series, 14
E96 series, 14
gate resistors, 174
list of with suppliers, 410
photo of, 21
photoresistors, 22, 201
power ratings, 19, 21
selecting, 21
selecting LED series resistors, 249
stocking, 14
surface mount technology (SMT), 13
thermistors, 23, 201, 207, 209
through-hole, 11
values of, finding standard, 14
values of, in parallel, 18
values of, in series, 17
values of, reading, 11
variable, 15
voltage reduction using, 19
wire selection, 24

resources, online, xiv

Index | 433

reverse polarity, 107
reverse-biased voltage, 48
reversible switching, 183
RGB LEDs, 264
ring oscillators, 298
ripple voltage

calculating, 84
defined, 84
reducing, 85

RMS (root mean square) voltage, 10
rotary encoders, 196
rotary position, measuring, 211
rotary switches, 76

(see also switches and relays)

S
safety warnings

rules for working with high voltages, 406
SMD ovens, 384
soldering, 379
switching high-voltage AC, 67
voltages approaching 1000V, 100
working with high-voltage AC, 70
working with inverters, 95

SBC (single board computers), 135, 140, 143
(see also Raspberry Pi)

Schottky diodes, 108
SCLK (synchronized with a clock signal), 165
SCRs (silicon-controlled rectifiers), 55
self-discharge (capacitors), 31
semiconductors, 58
sensors, 191-223

analog input from resistive sensors, 201
analog inputs to Raspberry Pi, 203, 204
attaching multiple, 217
converting mechanical movement, 191
distance, measuring, 220
humidity, measuring, 218
light intensity, measuring, 206
optical sensors, 227
rotation, measuring, 211
rotational position, 196
temperature, measuring, 207, 209, 212, 214

Serial Monitor (Arduino), 151, 155, 158
Serial Peripheral Interface (SPI) devices, 164
serial-to-parallel shift registers, 284
series resistors, 249
servomotors, 225, 233

(see also motors)

setFrequency function (Arduino), 359
setup function (Arduino), 149, 158
shift registers, 284
shiftOut function (Arduino), 285
shift_out function (Raspberry Pi), 286
signal generators, 402
signals, buffering, 323
simulation, 403
sinking, defined, 146
SLA (sealed lead acid) batteries, 115, 116
slayer exciters, 104
SMD ovens, 384
SMPS (switched mode power supplies), 40, 43,

97
SMT (surface mount technology) resistors, 13,

21
snubbing diodes, 226
software-defined radios (SDRs), 353
solar power, 123-133 (see also batteries; power

supplies)
measuring panel output, 128
photovoltaic solar panels, 123
powering Arduino projects, 130
powering Raspberry Pi projects, 132
selecting solar panels, 126

soldering
desoldering components, 384
safety warning, 379, 384
surface-mount, 379-384
through-hole, 378

solderless breadboards, 365
solid-state flyback converters, 104
sourcing, defined, 146
SPI (Serial Peripheral Interface) devices, 164
Squid Buttons, 195, 251
SSR (solid-state relays), 187
Standard Wire Gauge (SWG), 25
Steinhart–Hart equation, 208
step-down transformers, 83
stepper motors, 225, 238, 243

(see also motors)
STGF3NC120HD transistors, 64
stripboards, 374
supercapacitors, 33, 38
suppliers and parts (see parts and suppliers)
surface mount technology (SMT) resistors, 13,

21
SWG (Standard Wire Gauge), 25

434 | Index

switched mode power supplies (SMPS), 40, 43,
97

switches and relays
connecting to Arduino boards, 151, 191,

191
connecting to Raspberry Pi, 154, 191
controlling relays with microcontrollers,

184
controlling solid-state relays with microcon‐

trollers, 187
electromechanical relays, 78
microswitches, 195
operation of, 73
photo of, 75, 79
potential concerns, 74
purpose of, 73
reed switches, 77
selecting, 76
switching using magnetism, 77
types of, 75

switching
alternating current, 67
BJT vs. MOSFET, 176
common-source arrangement, 173
components on and off, 145
controlling relays, 184
controlling solid-state relays, 187
digital switches, 56, 151, 154
high current loads, 61
high-side switching, 171
low-side switching, 169, 176
motors on and off, 226
open-collector outputs, 188
reversible switching, 183
several LEDs simultaneously, 256
using P-channel MOSFET and BJT, 175
very high voltages, 63
with Arduino boards, 178
with Raspberry Pi, 181
with small control current, 59

switching voltage-regulators, 92

T
TDA7052 IC, 343
TEA5767 IC, 357
temperature ratings (capacitors), 35
temperature, measuring, 23, 201, 207, 209, 212,

214
temperature-sensing ICs, 209, 212, 214

TEPT5600 transistors, 69
Tesla coils, 103
test signals, generating, 402
text, displaying, 275
theory, 1-10

alternating current, 8
current, 1
Kirchhoff ’s Voltage Law, 7
Kirchhoff 's Current Law, 6, 112
Ohm's law, 4
power, 8
voltage, 2

thermistors, 23, 201, 207, 209
three-stage voltage multipliers, 102
TIP120 transistors, 60, 65
TMP36 IC, 212
TO-220 package, 61, 64, 88
TO-92 package, 56, 64
toggle switches, 76, 288

(see also switches and relays)
tolerance (capacitors), 36
tone function (Arduino), 337
tools, 389-407

circuit-simulator software, 403
discharging capacitors, 396
function generators, 402
lab power supplies, 389-390
list of with suppliers, 417
measuring high voltages, 397
multimeters, 391-396
oscilloscopes, 400
safety rules for high voltages, 406

toroidal transformers, 42
TPA3122D2 IC, 345
transceivers, 359
transformers, 41, 82, 83, 85
transistors and integrated circuits (ICs), 55-72

bipolar junction transistors (BJTs), 56
common-emitter switching, 169
current gain, 57
Darlington transistors, 59
datasheets, 65, 81
half-bridge configuration, 183
high-side switching, 171
IC pinouts, 414
IGBTs (insulated gate bipolar transistors),

63
list of with suppliers, 412
MOSFETs, 61, 108, 166, 173, 175, 176, 298

Index | 435

NPN (negative positive negative), 58
opto-couplers, 69, 416
oscillator creation using, 297
phototransistors, 68
PNP (positive negative positive), 59, 172
purpose of, 55
selecting ICs, 71
selecting transistors, 64, 176
stocking, 64
temperature-sensing ICs, 209, 212, 214
transistor pinouts, 412
TRIAC (TRIode for alternating current), 67

transmitters, legal aspects of, 349
(see also radio frequency)

TRIAC (TRIode for alternating current), 67
trimmers/trimpots, 16
tristate logic, 172
TTL (transistor transistor logic), 283
typographical conventions, xiv

U
unijunction transistors, 55
unipolar stepper motors, 243
units and prefixes, 423

V
V (volts), 3
VA (volt amps), 83
variable output voltage regulators, 89
variable resistors, 15, 211
VCO chips, 354
voltage

AC conversion, 41, 47, 82
avoiding drops from input to output, 299
back-emf, 226

breakdown voltage (diodes), 49
calculating, 4
calculating within circuits, 7
comparing two levels of, 332
DC restrictions, 49
defined, 2
forward (Vf), 48
level conversion in microcontrollers, 165
measuring, 391
measuring AC, 392
measuring high, 397
reducing to measurable levels, 19
reference voltages, 49
reverse-biased, 48
ripple voltage, 84, 85
root mean square (RMS) voltage, 10
safety warning, 70, 95, 100, 406
switching very high, 63

voltage dividers, 19, 397
voltage ratings (capacitors), 35
voltage-controlled oscillators (VCO), 310
voltage-multiplier circuits, 98
volts (V), 3

W
watts (W), defined, 8
wires

photos of, 26
properties of common, 25
selecting, 25
standards for, 25

Z
Zener diodes, 49, 300

436 | Index

About the Author
Simon Monk is a full-time author and maker, mostly writing about electronics for
makers. Some of his better-known books include Programming Arduino: Getting
Started with Sketches, Raspberry Pi Cookbook, and Hacking Electronics. He is also the
coauthor of Practical Electronics for Inventors and wrote Minecraft Mastery with his
son, Matthew Monk.

Colophon
The animal on the cover of Electronics Cookbook is an elephantnose fish (Gnathone‐
mus petersii). This species is native to West and Central Africa, where it favors muddy
and heavily-vegetated areas of rivers. Its Latin name petersii most likely refers to Ger‐
man naturalist Wilhelm Peters.

The elephantnose fish is oblong-shaped and typically dark brown or black in color. Its
“trunk”—the signature feature from which the species’s common name is derived—is
not actually a nose, but an extension of the mouth that is covered in electroreceptors.
Gnathonemus petersii produces a weak electric field that is used to probe for food,
navigate through murky waters, and detect prey. It also lends itself to communicating
with other fish and finding mates.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on Electronics Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Theory
	1.0 Introduction
	1.1 Understanding Current
	Problem
	Solution
	Discussion
	See Also

	1.2 Understanding Voltage
	Problem
	Solution
	Discussion
	See Also

	1.3 Calculate Voltage, Current, or Resistance
	Problem
	Solution
	Discussion
	See Also

	1.4 Calculate Current at Any Point in a Circuit
	Problem
	Solution
	Discussion
	See Also

	1.5 Calculate the Voltages Within Your Circuit
	Problem
	Solution
	Discussion
	See Also

	1.6 Understanding Power
	Problem
	Solution
	Discussion
	See Also

	1.7 Alternating Current
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Resistors
	2.0 Introduction
	2.1 Read Resistor Packages
	Problem
	Solution
	Discussion
	See Also

	2.2 Find Standard Resistor Values
	Problem
	Solution
	Discussion
	See Also

	2.3 Select a Variable Resistor
	Problem
	Solution
	Discussion
	See Also

	2.4 Combine Resistors in Series
	Problem
	Solution
	Discussion
	See Also

	2.5 Combine Resistors in Parallel
	Problem
	Solution
	Discussion
	See Also

	2.6 Reduce a Voltage to a Measurable Level
	Problem
	Solution
	Discussion
	See Also

	2.7 Choose a Resistor that Won’t Burn Out
	Problem
	Solution
	Discussion
	See Also

	2.8 Measure Light Levels
	Problem
	Solution
	Discussion
	See Also

	2.9 Measure Temperature
	Problem
	Solution
	Discussion
	See Also

	2.10 Choose the Right Wires
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Capacitors and Inductors
	3.0 Introduction
	3.1 Store Energy Temporarily in Your Circuits
	Problem
	Solution
	Discussion
	See Also

	3.2 Identify Types of Capacitors
	Problem
	Solution
	Discussion
	See Also

	3.3 Read Capacitor Packages
	Problem
	Solution
	Discussion
	See Also

	3.4 Connect Capacitors in Parallel
	Problem
	Solution
	Discussion
	See Also

	3.5 Connect Capacitors in Series
	Problem
	Solution
	Discussion
	See Also

	3.6 Store Huge Amounts of Energy
	Problem
	Solution
	Discussion
	See Also

	3.7 Calculate the Energy Stored in a Capacitor
	Problem
	Solution
	Discussion
	See Also

	3.8 Modify and Moderate Current Flow
	Problem
	Solution
	Discussion
	See Also

	3.9 Convert AC Voltages
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Diodes
	4.0 Introduction
	4.1 Block the Flow of Current in One Direction
	Problem
	Solution
	Discussion
	See Also

	4.2 Know Your Diodes
	Problem
	Solution
	Discussion
	See Also

	4.3 Use a Diode to Restrict DC Voltages
	Problem
	Solution
	Discussion
	See Also

	4.4 Let There Be Light
	Problem
	Solution
	Discussion
	See Also

	4.5 Detect Light
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Transistors and Integrated Circuits
	5.0 Introduction
	5.1 Switch a Stronger Current Using a Weaker One
	Problem
	Solution
	Discussion
	See Also

	5.2 Switch a Current with Minimal Control Current
	Problem
	Solution
	Discussion
	See Also

	5.3 Switch High Current Loads Efficiently
	Problem
	Solution
	Discussion
	See Also

	5.4 Switch Very High Voltages
	Problem
	Solution
	Discussion
	See Also

	5.5 Choosing the Right Transistor
	Problem
	Solution
	Discussion
	See Also

	5.6 Switching Alternating Current
	Problem
	Solution
	Discussion
	See Also

	5.7 Detecting Light with Transistors
	Problem
	Solution
	Discussion
	See Also

	5.8 Isolating Signals for Safety or Noise Elimination
	Problem
	Solution
	Discussion
	See Also

	5.9 Discover Integrated Circuits
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Switches and Relays
	6.0 Introduction
	6.1 Switch Electricity Mechanically
	Problem
	Solution
	Discussion
	See Also

	6.2 Know Your Switches
	Problem
	Solution
	Discussion
	See Also

	6.3 Switching Using Magnetism
	Problem
	Solution
	Discussion
	See Also

	6.4 Rediscover Relays
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Power Supplies
	7.0 Introduction
	7.1 Convert AC to AC
	Problem
	Solution
	Discussion
	See Also

	7.2 Convert AC to DC (Quick and Dirty)
	Problem
	Solution
	Discussion
	See Also

	7.3 Convert AC to DC with Less Ripple
	Problem
	Solution
	Discussion
	See Also

	7.4 Convert AC to Regulated DC
	Problem
	Solution
	Discussion
	See Also

	7.5 Converting AC to Variable DC
	Problem
	Solution
	Discussion
	See Also

	7.6 Regulate Voltage from a Battery Source
	Problem
	Solution
	Discussion
	See Also

	7.7 Make a Constant-Current Power Supply
	Problem
	Solution
	Discussion
	See Also

	7.8 Regulate DC Voltage Efficiently
	Problem
	Solution
	Discussion
	See Also

	7.9 Convert a Lower DC Voltage to a Higher DC Voltage
	Problem
	Solution
	Discussion
	See Also

	7.10 Convert DC to AC
	Problem
	Solution
	Discussion
	See Also

	7.11 Power a Project from 110 or 220V AC
	Problem
	Solution
	Discussion
	See Also

	7.12 Multiply Your Voltage
	Problem
	Solution
	Discussion
	See Also

	7.13 Supply High Voltage at 450V
	Problem
	Solution
	Discussion
	See Also

	7.14 Even Higher Voltage Supply (> 1kV)
	Problem
	Solution
	Discussion
	See Also

	7.15 Very Very High Voltage Supply (Solid-State Tesla Coil)
	Problem
	Solution
	Discussion
	See Also

	7.16 Blow a Fuse
	Problem
	Solution
	Discussion
	See Also

	7.17 Protect from Polarity Errors
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Batteries
	8.0 Introduction
	8.1 Estimating Battery Life
	Problem
	Solution
	Discussion
	See Also

	8.2 Selecting a Nonrechargeable Battery
	Problem
	Solution
	Discussion
	See Also

	8.3 Selecting a Rechargeable Battery
	Problem
	Solution
	Discussion
	See Also

	8.4 Trickle Charging
	Problem
	Solution
	Discussion
	See Also

	8.5 Automatic Battery Backup
	Problem
	Solution
	Discussion
	See Also

	8.6 Charging LiPo Batteries
	Problem
	Solution
	Discussion
	See Also

	8.7 Get Every Drop of Power with the Joule Thief
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Solar Power
	9.0 Introduction
	9.1 Power Your Projects with Solar
	Problem
	Solution
	Discussion
	See Also

	9.2 Choose a Solar Panel
	Problem
	Solution
	Discussion
	See Also

	9.3 Measure the Actual Output Power of a Solar Panel
	Problem
	Solution
	Discussion
	See Also

	9.4 Power an Arduino with Solar
	Problem
	Solution
	Discussion
	See Also

	9.5 Power a Raspberry Pi with Solar
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Arduino and Raspberry Pi
	10.0 Introduction
	10.1 Explore Arduino
	Problem
	Solution
	Discussion
	See Also

	10.2 Downloading and Using the Book’s Arduino Sketches
	Problem
	Solution
	Discussion
	See Also

	10.3 Explore Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	10.4 Downloading and Running This Book’s Python Programs
	Problem
	Solution
	Discussion
	See Also

	10.5 Run a Program on Your Raspberry Pi on Startup
	Problem
	Solution
	Discussion
	See Also

	10.6 Explore Alternatives to Arduino and Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	10.7 Switch Things On and Off
	Problem
	Solution
	Discussion
	See Also

	10.8 Control Digital Outputs with Arduino
	Problem
	Solution
	Discussion
	See Also

	10.9 Control Digital Outputs from Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	10.10 Connect Arduino to Digital Inputs Like Switches
	Problem
	Solution
	Discussion
	See Also

	10.11 Connect Raspberry Pi to Digital Inputs Like Switches
	Problem
	Solution
	Discussion
	See Also

	10.12 Read Analog Inputs on Arduino
	Problem
	Solution
	Discussion
	See Also

	10.13 Generate Analog Output on Arduino
	Problem
	Solution
	Discussion
	See Also

	10.14 Generate Analog Output on Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	10.15 Connect Raspberry Pi to I2C Devices
	Problem
	Solution
	Discussion
	See Also

	10.16 Connect Raspberry Pi to SPI Devices
	Problem
	Solution
	Discussion
	See Also

	10.17 Level Conversion
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Switching
	11.0 Introduction
	11.1 Switch More Power than Your Pi or Arduino Can Handle
	Problem
	Solution
	Discussion
	See Also

	11.2 Switch Power On the High Side
	Problem
	Solution
	Discussion
	See Also

	11.3 Switch Much More Power
	Problem
	Solution
	Discussion
	See Also

	11.4 Switch Much More Power on the High Side
	Problem
	Solution
	Discussion
	See Also

	11.5 Choose Between a BJT and MOSFET
	Problem
	Solution
	Discussion
	See Also

	11.6 Switch with Arduino
	Problem
	Solution
	Discussion
	See Also

	11.7 Switch with a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	11.8 Reversible Switching
	Problem
	Solution
	Discussion
	See Also

	11.9 Control a Relay from a GPIO Pin
	Problem
	Solution
	Discussion
	See Also

	11.10 Control a Solid-State Relay from a GPIO Pin
	Problem
	Solution
	Discussion
	See Also

	11.11 Connect to Open-Collector Outputs
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Sensors
	12.0 Introduction
	12.1 Connect a Switch to an Arduino or Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	12.2 Sense Rotational Position
	Problem
	Solution
	Discussion
	See Also

	12.3 Sense Analog Input from Resistive Sensors
	Problem
	Solution
	Discussion
	See Also

	12.4 Add Analog Inputs to Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	12.5 Connect Resistive Sensors to the Raspberry Pi without an ADC
	Problem
	Solution
	Discussion
	See Also

	12.6 Measure Light Intensity
	Problem
	Solution
	Discussion
	See Also

	12.7 Measure Temperature on Arduino or Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	12.8 Measure Temperature without an ADC on the Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	12.9 Measure Rotation Using a Potentiometer
	Problem
	Solution
	Discussion
	See Also

	12.10 Measure Temperature with an Analog IC
	Problem
	Solution
	Discussion
	See Also

	12.11 Measure Temperature with a Digital IC
	Problem
	Solution
	Discussion
	See Also

	12.12 Measure Humidity
	Problem
	Solution
	Discussion
	See Also

	12.13 Measure Distance
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Motors
	13.0 Introduction
	13.1 Switch DC Motors On and Off
	Problem
	Solution
	Discussion
	See Also

	13.2 Measure the Speed of a DC Motor
	Problem
	Solution
	Discussion
	See Also

	13.3 Control the Direction of a DC Motor
	Problem
	Solution
	Discussion
	See Also

	13.4 Setting Motors to Precise Positions
	Problem
	Solution
	Discussion
	See Also

	13.5 Move a Motor a Precise Number of Steps
	Problem
	Solution
	Discussion
	See Also

	13.6 Choose a Simpler Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. LEDs and Displays
	14.0 Introduction
	14.1 Connect Standard LEDs
	Problem
	Solution
	Discussion
	See Also

	14.2 Drive High-Power LEDs
	Problem
	Solution
	Discussion
	See Also

	14.3 Power Lots of LEDs
	Problem
	Solution
	Discussion
	See Also

	14.4 Switch Lots of LEDs at the Same Time
	Problem
	Solution
	Discussion
	See Also

	14.5 Multiplex Signals to 7-Segment Displays
	Problem
	Solution
	Discussion
	See Also

	14.6 Control Many LEDs
	Problem
	Solution
	Discussion
	See Also

	14.7 Change the Colors of RGB LEDs
	Problem
	Solution
	Discussion
	See Also

	14.8 Connect to Addressable LED Strips
	Problem
	Solution
	Discussion
	See Also

	14.9 Use an I2C 7-Segment LED Display
	Problem
	Solution
	Discussion
	See Also

	14.10 Display Graphics or Text on OLED Displays
	Problem
	Solution
	Discussion
	See Also

	14.11 Display Text on Alphanumeric LCD Displays
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Digital ICs
	15.0 Introduction
	15.1 Protecting ICs from Electrical Noise
	Problem
	Solution
	Discussion
	See Also

	15.2 Know Your Logic Families
	Problem
	Solution
	Discussion
	See Also

	15.3 Control More Outputs Than You Have GPIO Pins
	Problem
	Solution
	Discussion
	See Also

	15.4 Build a Digital Toggle Switch
	Problem
	Solution
	Discussion
	See Also

	15.5 Reduce a Signal’s Frequency
	Problem
	Solution
	Discussion
	See Also

	15.6 Connect to Decimal Counters
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Analog
	16.0 Introduction
	16.1 Filter Out High Frequencies (Quick and Dirty)
	Problem
	Solution
	Discussion
	See Also

	16.2 Create an Oscillator
	Problem
	Solution
	Discussion
	See Also

	16.3 Flash LEDs in Series
	Problem
	Solution
	Discussion
	See Also

	16.4 Avoid Drops in Voltage from Input to Output
	Problem
	Solution
	Discussion
	See Also

	16.5 Build a Low-Cost Oscillator
	Problem
	Solution
	Discussion
	See Also

	16.6 Build a Variable Duty Cycle Oscillator
	Problem
	Solution
	Discussion
	See Also

	16.7 Make a One-Shot Timer
	Problem
	Solution
	Discussion
	See Also

	16.8 Control Motor Speed
	Problem
	Solution
	Discussion
	See Also

	16.9 Apply PWM to an Analog Signal
	Problem
	Solution
	Discussion
	See Also

	16.10 Make a Voltage-Controlled Oscillator (VCO)
	Problem
	Solution
	Discussion
	See Also

	16.11 Explore Decibel Measurement
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Operational Amplifiers
	17.0 Introduction
	17.1 Select an Op-Amp
	Problem
	Solution
	Discussion
	See Also

	17.2 Power an Op-Amp (Split Supply)
	Problem
	Solution
	Discussion
	See Also

	17.3 Power an Op-Amp (Single Supply)
	Problem
	Solution
	Discussion
	See Also

	17.4 Make an Inverting Amplifier
	Problem
	Solution
	Discussion
	See Also

	17.5 Make a Noninverting Amplifier
	Problem
	Solution
	Discussion
	See Also

	17.6 Buffer a Signal
	Problem
	Solution
	Discussion
	See Also

	17.7 Reduce the Amplitude of High Frequencies
	Problem
	Solution
	Discussion
	See Also

	17.8 Filter Out Low Frequencies
	Problem
	Solution
	Discussion
	See Also

	17.9 Filter Out High and Low Frequencies
	Problem
	Solution
	Discussion
	See Also

	17.10 Compare Two Voltages
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Audio
	18.0 Introduction
	18.1 Play Sounds on an Arduino
	Problem
	Solution
	Discussion
	See Also

	18.2 Play Sound with a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	18.3 Incorporate an Electret Microphone Into a Project
	Problem
	Solution
	Discussion
	See Also

	18.4 Make a 1W Power Amplifier
	Problem
	Solution
	Discussion
	See Also

	18.5 Make a 10W Power Amplifier
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Radio Frequency
	19.0 Introduction
	Amplitude Modulation (AM)
	Frequency Modulation (FM)
	Digital Radio

	19.1 Make an FM Radio Transmitter
	Problem
	Solution
	Discussion
	See Also

	19.2 Create a Software FM Transmitter Using Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	19.3 Build an Arduino-Powered FM Receiver
	Problem
	Solution
	Discussion
	See Also

	19.4 Send Digital Data Over a Radio
	Problem
	Solution
	Discussion
	See Also

	Chapter 20. Construction
	20.0 Introduction
	20.1 Create Temporary Circuits
	Problem
	Solution
	Discussion
	See Also

	20.2 Create Permanent Circuits
	Problem
	Solution
	Discussion
	See Also

	20.3 Design Your Own Circuit Board
	Problem
	Solution
	Discussion
	See Also

	20.4 Explore Through-Hole Soldering
	Problem
	Solution
	Discussion
	See Also

	20.5 Explore Surface-Mount Soldering
	Problem
	Solution
	Discussion
	See Also

	20.6 Desolder Components
	Problem
	Solution
	Discussion
	See Also

	20.7 Solder Without Destroying Components
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. Tools
	21.0 Introduction
	21.1 Use a Lab Power Supply
	Problem
	Solution
	Discussion
	See Also

	21.2 Measure DC Voltage
	Problem
	Solution
	Discussion
	See Also

	21.3 Measure AC Voltage
	Problem
	Solution
	Discussion
	See Also

	21.4 Measure Current
	Problem
	Solution
	Discussion
	See Also

	21.5 Measure Continuity
	Problem
	Solution
	Discussion
	See Also

	21.6 Measure Resistance, Capacitance, or Inductance
	Problem
	Solution
	Discussion
	See Also

	21.7 Discharge Capacitors
	Problem
	Solution
	Discussion
	See Also

	21.8 Measure High Voltages
	Problem
	Solution
	Discussion
	See Also

	21.9 Use an Oscilloscope
	Problem
	Solution
	Discussion
	See Also

	21.10 Use a Function Generator
	Problem
	Solution
	Discussion
	See Also

	21.11 Simulation
	Problem
	Solution
	Discussion
	See Also

	21.12 Working Safely with High Voltages
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Parts and Suppliers
	Parts
	Prototyping Equipment
	Resistors
	Capacitors and Inductors
	Transistors, Diodes
	Integrated Circuits
	Opto-Electronics
	Modules
	Miscellaneous
	Equipment

	Appendix B. Arduino Pinouts
	Arduino Uno R3
	Arduino Pro Mini

	Appendix C. Raspberry Pi Pinouts
	Raspberry Pi 2 Model B, B+, A+, Zero
	Raspberry Pi Model B, Rev. 2, A
	Raspberry Pi Model B, Rev. 1

	Appendix D. Units and Prefixes
	Units
	Unit Prefixes

	Index
	About the Author

